SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ferrari Roberto) "

Sökning: WFRF:(Ferrari Roberto)

  • Resultat 1-10 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barack, Leor, et al. (författare)
  • Black holes, gravitational waves and fundamental physics : a roadmap
  • 2019
  • Ingår i: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 36:14
  • Forskningsöversikt (refereegranskat)abstract
    • The grand challenges of contemporary fundamental physics dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'.
  •  
2.
  • Battistoni, Giuseppe, et al. (författare)
  • FLUKA Capabilities and CERN Applications for the Study of Radiation Damage to Electronics at High-Energy Hadron Accelerators
  • 2011
  • Konferensbidrag (refereegranskat)abstract
    • The assessment of radiation damage to electronics is a complex process and requires a detailed description of the full particle energy spectra, as well as a clear characterization of the quantities used to predict radiation damage. FLUKA, a multi-purpose particle interaction and transport code, is capable of calculating proton-proton and heavy ion collisions at LHC energies and beyond. It correctly describes the entire hadronic and electromagnetic particle cascade initiated by secondary particles from TeV energies down to thermal neutrons, and provides direct scoring capabilities essential to estimate in detail the possible risk of radiation damage to electronics. This paper presents the FLUKA capabilities for applications related to radiation damage to electronics, providing benchmarking examples and showing the practical applications of FLUKA at CERN facilities such as CNGS and LHC. Related applications range from the study of device effects, the detailed characterization of the radiation field and radiation monitor calibration, to the input requirements for important mitigation studies including shielding, relocation or other options.
  •  
3.
  • Danaei, Goodarz, et al. (författare)
  • Effects of diabetes definition on global surveillance of diabetes prevalence and diagnosis: a pooled analysis of 96 population-based studies with 331288 participants
  • 2015
  • Ingår i: The Lancet Diabetes & Endocrinology. - 2213-8595 .- 2213-8587. ; 3:8, s. 624-637
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Diabetes has been defined on the basis of different biomarkers, including fasting plasma glucose (FPG), 2-h plasma glucose in an oral glucose tolerance test (2hOGTT), and HbA(1c). We assessed the effect of different diagnostic definitions on both the population prevalence of diabetes and the classification of previously undiagnosed individuals as having diabetes versus not having diabetes in a pooled analysis of data from population-based health examination surveys in different regions. Methods We used data from 96 population-based health examination surveys that had measured at least two of the biomarkers used for defining diabetes. Diabetes was defined using HbA(1c) (HbA(1c) >= 6 . 5% or history of diabetes diagnosis or using insulin or oral hypoglycaemic drugs) compared with either FPG only or FPG-or-2hOGTT definitions (FPG >= 7 . 0 mmol/L or 2hOGTT >= 11 . 1 mmol/L or history of diabetes or using insulin or oral hypoglycaemic drugs). We calculated diabetes prevalence, taking into account complex survey design and survey sample weights. We compared the prevalences of diabetes using different definitions graphically and by regression analyses. We calculated sensitivity and specificity of diabetes diagnosis based on HbA1c compared with diagnosis based on glucose among previously undiagnosed individuals (ie, excluding those with history of diabetes or using insulin or oral hypoglycaemic drugs). We calculated sensitivity and specificity in each survey, and then pooled results using a random-effects model. We assessed the sources of heterogeneity of sensitivity by meta-regressions for study characteristics selected a priori. Findings Population prevalence of diabetes based on FPG- or-2hOGTT was correlated with prevalence based on FPG alone (r= 0 . 98), but was higher by 2-6 percentage points at different prevalence levels. Prevalence based on HbA(1c) was lower than prevalence based on FPG in 42 . 8% of age-sex-survey groups and higher in another 41 . 6%; in the other 15 . 6%, the two definitions provided similar prevalence estimates. The variation across studies in the relation between glucose-based and HbA(1c)-based prevalences was partly related to participants' age, followed by natural logarithm of per person gross domestic product, the year of survey, mean BMI, and whether the survey population was national, subnational, or from specific communities. Diabetes defined as HbA(1c) 6 . 5% or more had a pooled sensitivity of 52 . 8% (95% CI 51 . 3-54 . 3%) and a pooled specificity of 99 . 74% (99 . 71-99 . 78%) compared with FPG 7 . 0 mmol/L or more for diagnosing previously undiagnosed participants; sensitivity compared with diabetes defined based on FPG-or-2hOGTT was 30 . 5% (28 . 7-32 . 3%). None of the preselected study-level characteristics explained the heterogeneity in the sensitivity of HbA(1c) versus FPG. Interpretation Different biomarkers and definitions for diabetes can provide different estimates of population prevalence of diabetes, and differentially identify people without previous diagnosis as having diabetes. Using an HbA(1c)-based definition alone in health surveys will not identify a substantial proportion of previously undiagnosed people who would be considered as having diabetes using a glucose-based test.
  •  
4.
  • Zhou, Bin, et al. (författare)
  • Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants
  • 2016
  • Ingår i: The Lancet. - : Elsevier B.V.. - 0140-6736 .- 1474-547X. ; 387:10027, s. 1513-1530
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: One of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are aff ecting the number of adults with diabetes.Methods: We pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence-defined as fasting plasma glucose of 7.0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs-in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue.Findings: We used data from 751 studies including 4372000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4.3% (95% credible interval 2.4-17.0) in 1980 to 9.0% (7.2-11.1) in 2014 in men, and from 5.0% (2.9-7.9) to 7.9% (6.4-9.7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28.5% due to the rise in prevalence, 39.7% due to population growth and ageing, and 31.8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target.Interpretation: Since 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults aff ected, has increased faster in low-income and middle-income countries than in high-income countries.
  •  
5.
  • Agudo, Antonio, et al. (författare)
  • Polymorphisms in metabolic genes related to tobacco smoke and the risk of gastric cancer in the European prospective investigation into cancer and nutrition
  • 2006
  • Ingår i: Cancer Epidemiology Biomarkers & Prevention. - 1538-7755. ; 15:12, s. 2427-2434
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolizing enzymes, which often display genetic polymorphisms, are involved in the activation of compounds present in tobacco smoke that may be relevant to gastric carcinogenesis. We report the results of a study looking at the association between risk of gastric adenocarcinoma and polymorphisms in genes CYP1A1, CYP1A2, EPHX1, and GSTT1. A nested case-control study was carried out within the European Prospective Investigation into Cancer and Nutrition, developed in 10 European countries. The study includes 243 newly diagnosed cases of histologically confirmed gastric adenocarcinoma and 946 controls matched by center, age, sex, and date of blood collection. Genotypes were determined in nuclear DNA from WBCs. We found an increased risk of gastric cancer for homozygotes for C (histidine) variant in Y113H of EPHX1 (odds ratio, 1.91; 95% confidence interval, 1.19-3.07) compared with subjects with TC/TT. There was also a significant increased risk for smokers carrying at least one variant allele A in Ex7+129C > A (m4) of CYP1A1 and never smokers with null GSTT1 and allele A in the locus -3859G > A of CYP1A2. Most of these genes are involved in the activation and detoxification of polycyclic aromatic hydrocarbons, suggesting a potential role of these compounds in gastric carcinogenesis.
  •  
6.
  •  
7.
  • Allaria, E., et al. (författare)
  • Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet
  • 2012
  • Ingår i: Nature Photonics. - 1749-4885. ; 6:10, s. 699-704
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers (FELs) are promising devices for generating light with laser-like properties in the extreme ultraviolet and X-ray spectral regions. Recently, FELs based on the self-amplified spontaneous emission (SASE) mechanism have allowed major breakthroughs in diffraction and spectroscopy applications, despite the relatively large shot-to-shot intensity and photon-energy fluctuations and the limited longitudinal coherence inherent in the SASE mechanism. Here, we report results on the initial performance of the FERMI seeded FEL, based on the high-gain harmonic generation configuration, in which an external laser is used to initiate the emission process. Emission from the FERMI FEL-1 source occurs in the form of pulses carrying energy of several tens of microjoules per pulse and tunable throughout the 65 to 20 nm wavelength range, with unprecedented shot-to-shot wavelength stability, low-intensity fluctuations, close to transform-limited bandwidth, transverse and longitudinal coherence and full control of polarization.
  •  
8.
  • Anselmino, Matteo, et al. (författare)
  • Atrial fibrillation ablation long-term ESC-EHRA EORP AFA LT registry : in-hospital and 1-year follow-up findings in Italy
  • 2020
  • Ingår i: Journal of Cardiovascular Medicine. - : Ovid Technologies (Wolters Kluwer Health). - 1558-2027 .- 1558-2035. ; 21:10, s. 740-748
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: To report the Italian data deriving from the European Society of Cardiology-EURObservational Research Program atrial fibrillation ablation long-term registry.Methods and results: Ten Italian centers enrolled up to 50 consecutive patients undergoing atrial fibrillation ablation. Of the 318 patients included, 5 (1.6%) did not undergo catheter ablation, 1 had ablation partially done and 62 were lost at 1-year follow-up. Women were less represented (23.6%) and the median age was 60.0 years. A total of 195 patients (62.3%) suffered paroxysmal atrial fibrillation, whereas only 9 (2.9%) had long-standing persistent atrial fibrillation. Most Italian patients (92.3%) were symptomatic but suffering fewer symptomatic events than patients enrolled in other countries (median of two events in the month preceding the ablation vs. three, respectively; P<0.0001). The main finding of the study is that the success rate at 1 year, with and without antiarrhythmic drugs, was 76.4%, consistently with other participating countries (73.4%). This result was obtained however, with a significantly lower prevalence of 1-year adverse events (7.3 vs. 16.6%, P<0.0001). Procedure duration and fluoroscopy total time resulted as being shorter in Italy (145 vs. 160, P=0.0005 and 16.9 vs. 20.0 min, P=0.0018, respectively); however, the radiation dose per BSA was greater (37.5 vs. 26.0mGy/cm(2), P=0.0022).Conclusion: The demographic characteristics of patients undergoing atrial fibrillation ablation are similar to those reported in other countries. The success rate in Italy is consistent with those in other countries, whereas the complications rate is lower.
  •  
9.
  • Backes, Claudia, et al. (författare)
  • Production and processing of graphene and related materials
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 52
Typ av publikation
tidskriftsartikel (40)
konferensbidrag (6)
rapport (3)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (46)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Cooper, Cyrus (9)
Geleijnse, Johanna M ... (9)
Jonas, Jost B. (9)
Khang, Young-Ho (9)
Brenner, Hermann (8)
Farzadfar, Farshad (8)
visa fler...
Khader, Yousef Saleh (8)
Nagel, Gabriele (8)
Shiri, Rahman (8)
Ferrari, Arnaud (7)
McKee, Martin (7)
Anker, Stefan D. (7)
Metra, Marco (7)
Kasaeian, Amir (7)
Lotufo, Paulo A. (7)
Malekzadeh, Reza (7)
Qorbani, Mostafa (7)
Sepanlou, Sadaf G. (7)
Alkerwi, Ala'a (7)
Ponikowski, Piotr (6)
Mohan, Viswanathan (6)
Kengne, Andre P. (6)
Huybrechts, Inge (6)
Jaarsma, Tiny (5)
Peeters, Petra H (5)
Overvad, Kim (5)
Boeing, Heiner (5)
Trichopoulou, Antoni ... (5)
Norat, Teresa (5)
Riboli, Elio (5)
Lundqvist, Annamari (5)
Giwercman, Aleksande ... (5)
Wade, Alisha N. (5)
Hardy, Rebecca (5)
Claessens, Frank (5)
Sjostrom, Michael (5)
Thijs, Lutgarde (5)
Staessen, Jan A (5)
Guessous, Idris (5)
Rivera, Juan A. (5)
Bjertness, Espen (5)
McGarvey, Stephen T. (5)
Schutte, Aletta E. (5)
Topor-Madry, Roman (5)
Palli, Domenico (5)
Tjonneland, Anne (5)
Finn, Joseph D. (5)
Casanueva, Felipe F. (5)
Kula, Krzysztof (5)
Punab, Margus (5)
visa färre...
Lärosäte
Uppsala universitet (18)
Lunds universitet (12)
Göteborgs universitet (7)
Linköpings universitet (7)
Karolinska Institutet (5)
Umeå universitet (4)
visa fler...
Luleå tekniska universitet (3)
Stockholms universitet (3)
Linnéuniversitetet (3)
Kungliga Tekniska Högskolan (2)
Mittuniversitetet (2)
Chalmers tekniska högskola (2)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (52)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (33)
Naturvetenskap (7)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy