SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Figueroa J) ;lar1:(lnu)"

Sökning: WFRF:(Figueroa J) > Linnéuniversitetet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Esser, Sarah P., et al. (författare)
  • A predicted CRISPR-mediated symbiosis between uncultivated archaea
  • 2023
  • Ingår i: Nature Microbiology. - : Nature Publishing Group. - 2058-5276. ; 8, s. 1619-1633
  • Tidskriftsartikel (refereegranskat)abstract
    • CRISPR spacers in DPANN archaea target putative essential genes in their episymbionts and could be a widespread occurrence across diverse archaeal lineages. CRISPR-Cas systems defend prokaryotic cells from invasive DNA of viruses, plasmids and other mobile genetic elements. Here, we show using metagenomics, metatranscriptomics and single-cell genomics that CRISPR systems of widespread, uncultivated archaea can also target chromosomal DNA of archaeal episymbionts of the DPANN superphylum. Using meta-omics datasets from Crystal Geyser and Horonobe Underground Research Laboratory, we find that CRISPR spacers of the hosts Candidatus Altiarchaeum crystalense and Ca. A. horonobense, respectively, match putative essential genes in their episymbionts' genomes of the genus Ca. Huberiarchaeum and that some of these spacers are expressed in situ. Metabolic interaction modelling also reveals complementation between host-episymbiont systems, on the basis of which we propose that episymbionts are either parasitic or mutualistic depending on the genotype of the host. By expanding our analysis to 7,012 archaeal genomes, we suggest that CRISPR-Cas targeting of genomes associated with symbiotic archaea evolved independently in various archaeal lineages.
  •  
2.
  • Bornemann, Till L., V, et al. (författare)
  • Genetic diversity in terrestrial subsurface ecosystems impacted by geological degassing
  • 2022
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth's mantle releases 38.7 +/- 2.9 Tg/yr CO2 along with other reduced and oxidized gases to the atmosphere shaping microbial metabolism at volcanic sites across the globe, yet little is known about its impact on microbial life under non-thermal conditions. Here, we perform comparative metagenomics coupled to geochemical measurements of deep subsurface fluids from a cold-water geyser driven by mantle degassing. Key organisms belonging to uncultivated Candidatus Altiarchaeum show a global biogeographic pattern and site-specific adaptations shaped by gene loss and inter-kingdom horizontal gene transfer. Comparison of the geyser community to 16 other publicly available deep subsurface sites demonstrate a conservation of chemolithoautotrophic metabolism across sites. In silico replication measures suggest a linear relationship of bacterial replication with ecosystems depth with the exception of impacted sites, which show near surface characteristics. Our results suggest that subsurface ecosystems affected by geological degassing are hotspots for microbial life in the deep biosphere. Geological degassing can impact subsurface metabolism. Here, the authors describe microbial communities from a cold-water geyser are described and compared with other deep subsurface sites, finding a key role for an uncultivated archaeon.
  •  
3.
  • Rahlff, Janina, et al. (författare)
  • Lytic archaeal viruses infect abundant primary producers in Earth's crust
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The continental subsurface houses a major portion of life's abundance and diversity, yet little is known about viruses infecting microbes that reside there. Here, we use a combination of metagenomics and virus-targeted direct-geneFISH (virusFISH) to show that highly abundant carbon-fixing organisms of the uncultivated genus Candidatus Altiarchaeum are frequent targets of previously unrecognized viruses in the deep subsurface. Analysis of CRISPR spacer matches display resistances of Ca. Altiarchaea against eight predicted viral clades, which show genomic relatedness across continents but little similarity to previously identified viruses. Based on metagenomic information, we tag and image a putatively viral genome rich in protospacers using fluorescence microscopy. VirusFISH reveals a lytic lifestyle of the respective virus and challenges previous predictions that lysogeny prevails as the dominant viral lifestyle in the subsurface. CRISPR development over time and imaging of 18 samples from one subsurface ecosystem suggest a sophisticated interplay of viral diversification and adapting CRISPR-mediated resistances of Ca. Altiarchaeum. We conclude that infections of primary producers with lytic viruses followed by cell lysis potentially jump-start heterotrophic carbon cycling in these subsurface ecosystems. Little is known about viral-host interactions in the continental subsurface. Here, the authors use a combination of metagenomics, fluorescence in situ hybridization, and electron microscopy to show infections of abundant C-fixing subsurface archaea by lytic viruses.
  •  
4.
  • Williamson, Craig E., et al. (författare)
  • The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems
  • 2019
  • Ingår i: Photochemical and Photobiological Sciences. - : Royal Society of Chemistry. - 1474-905X .- 1474-9092. ; 18:3, s. 717-746
  • Tidskriftsartikel (refereegranskat)abstract
    • This assessment summarises the current state of knowledge on the interactive effects of ozone depletion and climate change on aquatic ecosystems, focusing on how these affect exposures to UV radiation in both inland and oceanic waters. The ways in which stratospheric ozone depletion is directly altering climate in the southern hemisphere and the consequent extensive effects on aquatic ecosystems are also addressed. The primary objective is to synthesise novel findings over the past four years in the context of the existing understanding of ecosystem response to UV radiation and the interactive effects of climate change. If it were not for the Montreal Protocol, stratospheric ozone depletion would have led to high levels of exposure to solar UV radiation with much stronger negative effects on all trophic levels in aquatic ecosystems than currently experienced in both inland and oceanic waters. This “world avoided” scenario that has curtailed ozone depletion, means that climate change and other environmental variables will play the primary role in regulating the exposure of aquatic organisms to solar UV radiation. Reductions in the thickness and duration of snow and ice cover are increasing the levels of exposure of aquatic organisms to UV radiation. Climate change was also expected to increase exposure by causing shallow mixed layers, but new data show deepening in some regions and shoaling in others. In contrast, climate-change related increases in heavy precipitation and melting of glaciers and permafrost are increasing the concentration and colour of UV-absorbing dissolved organic matter (DOM) and particulates. This is leading to the “browning” of many inland and coastal waters, with consequent loss of the valuable ecosystem service in which solar UV radiation disinfects surface waters of parasites and pathogens. Many organisms can reduce damage due to exposure to UV radiation through behavioural avoidance, photoprotection, and photoenzymatic repair, but meta-analyses continue to confirm negative effects of UV radiation across all trophic levels. Modeling studies estimating photoinhibition of primary production in parts of the Pacific Ocean have demonstrated that the UV radiation component of sunlight leads to a 20% decrease in estimates of primary productivity. Exposure to UV radiation can also lead to positive effects on some organisms by damaging less UV-tolerant predators, competitors, and pathogens. UV radiation also contributes to the formation of microplastic pollutants and interacts with artificial sunscreens and other pollutants with adverse effects on aquatic ecosystems. Exposure to UV-B radiation can decrease the toxicity of some pollutants such as methyl mercury (due to its role in demethylation) but increase the toxicity of other pollutants such as some pesticides and polycyclic aromatic hydrocarbons. Feeding on microplastics by zooplankton can lead to bioaccumulation in fish. Microplastics are found in up to 20% of fish marketed for human consumption, potentially threatening food security. Depletion of stratospheric ozone has altered climate in the southern hemisphere in ways that have increased oceanic productivity and consequently the growth, survival and reproduction of many sea birds and mammals. In contrast, warmer sea surface temperatures related to these climate shifts are also correlated with declines in both kelp beds in Tasmania and corals in Brazil. This assessment demonstrates that knowledge of the interactive effects of ozone depletion, UV radiation, and climate change factors on aquatic ecosystems has advanced considerably over the past four years and confirms the importance of considering synergies between environmental factors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy