SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Filippenko A. V.) ;pers:(Sullivan M)"

Sökning: WFRF:(Filippenko A. V.) > Sullivan M

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Betoule, M., et al. (författare)
  • Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 568, s. A22-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We present cosmological constraints from a joint analysis of type la supernova (SN Ia) observations obtained by the SDSS-II and SNLS collaborations. The dataset includes several low-redshift samples (z < 0.1), all three seasons from the SDSS-11 (0.05 < z < 0.4), and three years from SNLS (0.2 < z < 1), and it totals 740 spectroscopically confirmed type la supernovae with high quality light curves. Methods. We followed the methods and assumptions of the SNLS three-year data analysis except for the following important improvements: I) the addition of the full SDSS-II spectroscopically-confirmed SN la sample in both the training of the SALT2 light-curve model and in the Hubble diagram analysis (374 SNe); 2) intercalibration of the SNLS and SDSS surveys and reduced systematic uncertainties in the photometric calibration, performed blindly with respect to the cosmology analysis; and 3) a thorough investigation of systematic errors associated with the SALT2 modeling of SN la light curves. Results. We produce recalibrated SN la light curves and associated distances for the SDSS-II and SNLS samples. The large SOSS-II sample provides an effective, independent, low -z anchor for the Hubble diagram and reduces the systematic error from calibration systematics in the low -z SN sample. For a flat ACDM cosmology, we find Omega(m), = 0.295 0.034 (stat+sys), a value consistent with the most recent cosmic microwave background (CMB) measurement from the Planck and WMAP experiments. Our result is 1.8 sigma (stat+sys) different than the previously published result of SNLS three-year data. The change is due primarily to improvements in the SNLS photometric calibration. When combined with CMB constraints, we measure a constant dark energy equation of state parameter omega = -1.018 +/- 0,057 (sral+sys) for a fiat universe. Adding baryon acoustic oscillation distance measurements gives similar constraints: omega = 59 -1.027 0.055. Our supernova measurements provide the most stringent constraints to date on the nature of dark energy.
  •  
2.
  • Yaron, O., et al. (författare)
  • Confined dense circumstellar material surrounding a regular type II supernova
  • 2017
  • Ingår i: Nature Physics. - 1745-2473 .- 1745-2481. ; 13:5, s. 510-517
  • Tidskriftsartikel (refereegranskat)abstract
    • With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, which sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere similar to 3 h after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at similar to 6 h post-explosion) spectra, map the distribution of material in the immediate environment (less than or similar to 1015 cm) of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final similar to 1 yr prior to explosion at a high rate, around 10(-3) solar masses per year. The complete disappearance of flash-ionized emission lines within the first several days requires that the dense CSM be confined to within less than or similar to 10(15) cm, consistent with radio non-detections at 70-100 days. The observations indicate that iPTF 13dqy was a regular type II supernova; thus, the finding that the probable red supergiant progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars.
  •  
3.
  • Khazov, D., et al. (författare)
  • FLASH SPECTROSCOPY : EMISSION LINES FROM THE IONIZED CIRCUMSTELLAR MATERIAL AROUND < 10-DAY-OLD TYPE II SUPERNOVAE
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 818:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (<= 10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra (flash spectroscopy), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe. II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as blue/featureless (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M-R = -18.2 belong to the FI or BF groups, and that all FI events peaked above M-R = -17.6 mag, significantly brighter than average SNe II.
  •  
4.
  • Ofek, E. O., et al. (författare)
  • PTF13efv-AN OUTBURST 500 DAYS PRIOR TO THE SNHUNT 275 EXPLOSION AND ITS RADIATIVE EFFICIENCY
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 824:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The progenitors of some supernovae (SNe) exhibit outbursts with super-Eddington luminosities prior to their final explosions. This behavior is common among SNe IIn, but the driving mechanisms of these precursors are not yet well-understood. SNHunt 275 was announced as a possible new SN during 2015 May. Here we report on pre-explosion observations of the location of this event by the Palomar Transient Factory (PTF) and report the detection of a precursor about 500 days prior to the 2015 May activity (PTF 13efv). The observed velocities in the 2015 transient and its 2013 precursor absorption spectra are low (1000-2000 km s(-1)), so it is not clear yet if the recent activity indeed marks the final disruption of the progenitor. Regardless of the nature of this event, we use the PTF photometric and spectral observations, as well as Swift-UVOT observations, to constrain the efficiency of the radiated energy relative to the total kinetic energy of the precursor. We find that, using an order-of-magnitude estimate and under the assumption of spherical symmetry, the ratio of the radiated energy to the kinetic energy is in the range of 4 x 10(-2) to 3.4 x 10(3).
  •  
5.
  • Graham, M. L., et al. (författare)
  • Delayed Circumstellar Interaction for Type Ia SN 2015cp Revealed by an HST Ultraviolet Imaging Survey
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 871:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The nature and role of the binary companion of carbon-oxygen white dwarf stars that explode as Type Ia supernovae (SNe Ia) are not yet fully understood. Past detections of circumstellar material (CSM) that contain hydrogen for a small number of SN Ia progenitor systems suggest that at least some have a nondegenerate companion. In order to constrain the prevalence, location, and quantity of CSM in SN Ia systems, we performed a near-ultraviolet (NUV) survey with the Hubble Space Telescope (HST) to look for the high-energy signature of SN Ia ejecta interacting with the CSM. Our survey revealed that SN 2015cp, an SN 1991T-like overluminous SN Ia, was experiencing late-onset interaction between its ejecta and the surrounding CSM 664 days after its light-curve peak. We present ground-and space-based follow-up observations of SN. 2015cp that reveal optical emission lines of H and Ca, typical signatures of ejecta-CSM interaction. We show how SN. 2015cp was likely similar to the well-studied SN Ia-CSM event PTF11kx, making it the second case in which an unambiguously classified SN Ia was observed to interact with a distant shell of CSM that contains hydrogen (R-CSM greater than or similar to 10(16) cm). The remainder of our HST NUV images of SNe Ia were nondetections that we use to constrain the occurrence rate of observable late-onset CSM interaction. We apply theoretical models for the emission from ejecta-CSM interaction to our NUV nondetections and place upper limits on the mass and radial extent of CSM in SN Ia progenitor systems.
  •  
6.
  • Rubin, Adam, et al. (författare)
  • TYPE II SUPERNOVA ENERGETICS AND COMPARISON OF LIGHT CURVES TO SHOCK-COOLING MODELS
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 820:1
  • Tidskriftsartikel (refereegranskat)abstract
    • During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with > 5 detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1-3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2-20) x 10(51) erg/(10 M-circle dot), and have a mean energy per unit mass of < E/M > = 0.85 x 10(51) erg/(10 M-circle dot), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of Ni-56 produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate (Delta m(15)), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. This limits the possible power sources for such events.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy