1. |
- Wang, Xiaofeng, et al.
(författare)
-
Evidence for type ia supernova diversity from ultraviolet observations with the hubble space telescope
- 2012
-
Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 749:2, s. 126-
-
Tidskriftsartikel (refereegranskat)abstract
- We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This data set provides unique spectral time series down to 2000 angstrom. Significant diversity is seen in the near-maximum-light spectra (similar to 2000-3500 angstrom) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminositiesmeasured in the uvw1/F250W filter are found to correlate with the B-band light-curve shape parameter Delta m(15)(B), but with much larger scatter relative to the correlation in the broadband B band (e.g., similar to 0.4 mag versus similar to 0.2 mag for those with 0.8 mag < Delta m(15)(B) < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at > 3 sigma), being brighter than normal SNe Ia such as SN 2005cf by similar to 0.9 mag and similar to 2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects.
|
|
2. |
- Arcavi, Iair, et al.
(författare)
-
Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star
- 2017
-
Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 551:7679, s. 210-213
-
Tidskriftsartikel (refereegranskat)abstract
- Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining(1). Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability(2-5). That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required.
|
|
3. |
- Ben-Ami, Sagi, et al.
(författare)
-
ULTRAVIOLET SPECTROSCOPY OF TYPE IIB SUPERNOVAE : DIVERSITY AND THE IMPACT OF CIRCUMSTELLAR MATERIAL
- 2015
-
Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 803:1
-
Tidskriftsartikel (refereegranskat)abstract
- We present new Hubble Space Telescope (HST) multi-epoch ultraviolet (UV) spectra of the bright Type IIb SN 2013df, and undertake a comprehensive analysis of the set of four SNe IIb for which HST UV spectra are available (SN 1993J, SN 2001ig, SN 2011dh, and SN 2013df). We find strong diversity in both continuum levels and line features among these objects. We use radiative-transfer models that fit the optical part of the spectrum well, and find that in three of these four events we see a UV continuum flux excess, apparently unaffected by line absorption. We hypothesize that this emission originates above the photosphere, and is related to interaction with circumstellar material (CSM) located in close proximity to the SN progenitor. In contrast, the spectra of SN 2001ig are well fit by single-temperature models, display weak continuum and strong reverse-fluorescence features, and are similar to spectra of radioactive 56Ni-dominated SNe Ia. A comparison of the early shock-cooling components in the observed light curves with the UV continuum levels which we assume trace the strength of CSM interaction suggests that events with slower cooling have stronger CSM emission. The radio emission from events having a prominent UV excess is perhaps consistent with slower blast-wave velocities, as expected if the explosion shock was slowed down by the CSM that is also responsible for the strong UV, but this connection is currently speculative as it is based on only a few events.
|
|
4. |
- Bose, Subhash, et al.
(författare)
-
ASASSN-18am/SN 2018gk : an overluminous Type IIb supernova from a massive progenitor
- 2021
-
Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:3, s. 3472-3491
-
Tidskriftsartikel (refereegranskat)abstract
- ASASSN-18am/SN 2018gk is a newly discovered member of the rare group of luminous, hydrogen-rich supernovae (SNe) with a peak absolute magnitude of M-V approximate to -20 mag that is in between normal core-collapse SNe and superluminous SNe. These SNe show no prominent spectroscopic signatures of ejecta interacting with circumstellar material (CSM), and their powering mechanism is debated. ASASSN-18am declines extremely rapidly for a Type II SN, with a photospheric-phase decline rate of similar to 6.0 mag (100 d)(-1). Owing to the weakening of H I and the appearance of He I in its later phases, ASASSN-18am is spectroscopically a Type IIb SN with a partially stripped envelope. However, its photometric and spectroscopic evolution shows significant differences from typical SNe IIb. Using a radiative diffusion model, we find that the light curve requires a high synthesized Ni-56 mass M-Ni similar to 0.4 M-circle dot and ejecta with high kinetic energy E-kin = (7-10) x 10(51) erg. Introducing a magnetar central engine still requires M-Ni similar to 0.3 M-circle dot and E-kin = 3 x 10(51) erg. The high Ni-56 mass is consistent with strong iron-group nebular lines in its spectra, which are also similar to several SNe Ic-BL with high Ni-56 yields. The earliest spectrum shows 'flash ionization' features, from which we estimate a mass-loss rate of (M) over dot approximate to 2 x 10(-4 )M(circle dot) yr(-1). This wind density is too low to power the luminous light curve by ejecta-CSM interaction. We measure expansion velocities as high as 17 000 km s(-1) for H alpha, which is remarkably high compared to other SNe II. We estimate an oxygen core mass of 1.8-3.4 M-circle dot using the [O I] luminosity measured from a nebular-phase spectrum, implying a progenitor with a zero-age main-sequence mass of 19-26 M-circle dot.
|
|
5. |
- Bose, Subhash, et al.
(författare)
-
Gaia17biu/SN 2017egm in NGC 3191 : The Closest Hydrogen-poor Superluminous Supernova to Date Is in a Normal, Massive, Metal-rich Spiral Galaxy
- 2018
-
Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 853:1
-
Tidskriftsartikel (refereegranskat)abstract
- Hydrogen-poor superluminous supernovae (SLSNe-I) have been predominantly found in low-metallicity, star-forming dwarf galaxies. Here we identify Gaia17biu/SN 2017egm as an SLSN-I occurring in a normal spiral galaxy (NGC 3191) in terms of stellar mass (several times 10(10) M-circle dot) and metallicity (roughly solar). At redshift z = 0.031, Gaia17biu is also the lowest-redshift SLSN-I to date, and the absence of a larger population of SLSNe-I in dwarf galaxies of similar redshift suggests that metallicity is likely less important to the production of SLSNe-I than previously believed. With the smallest distance and highest apparent brightness for an SLSN-I, we are able to study Gaia17biu in unprecedented detail. Its pre-peak near-ultraviolet to optical color is similar to that of Gaia16apd and among the bluest observed for an SLSN-I, while its peak luminosity (M-g = -21 mag) is substantially lower than that of Gaia16apd. Thanks to the high signal-to-noise ratios of our spectra, we identify several new spectroscopic features that may help to probe the properties of these enigmatic explosions. We detect polarization at the similar to 0.5% level that is not strongly dependent on wavelength, suggesting a modest, global departure from spherical symmetry. In addition, we put the tightest upper limit yet on the radio luminosity of an SLSN-I with < 5.4 x 10(26) erg s(-1) Hz(-1) at 10 GHz, which is almost a factor of 40 better than previous upper limits and one of the few measured at an early stage in the evolution of an SLSN-I. This limit largely rules out an association of this SLSN-I with known populations of gamma-ray-burst-like central engines.
|
|
6. |
- Brout, Dillon, et al.
(författare)
-
The Pantheon+ analysis : cosmological constraints
- 2022
-
Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 938:2
-
Tidskriftsartikel (refereegranskat)abstract
- We present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from z = 0.001 to 2.26. This work features an increased sample size from the addition of multiple cross-calibrated photometric systems of SNe covering an increased redshift span, and improved treatments of systematic uncertainties in comparison to the original Pantheon analysis, which together result in a factor of 2 improvement in cosmological constraining power. For a flat ΛCDM model, we find ΩM = 0.334 ± 0.018 from SNe Ia alone. For a flat w0CDM model, we measure w0 = −0.90 ± 0.14 from SNe Ia alone, H0 = 73.5 ± 1.1 km s−1 Mpc−1 when including the Cepheid host distances and covariance (SH0ES), and w0 = -0.978-+0.0310.024 when combining the SN likelihood with Planck constraints from the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO); both w0 values are consistent with a cosmological constant. We also present the most precise measurements to date on the evolution of dark energy in a flat w0waCDM universe, and measure wa = -0.1-+2.00.9 from Pantheon+ SNe Ia alone, H0 = 73.3 ± 1.1 km s−1 Mpc−1 when including SH0ES Cepheid distances, and wa = -0.65-+0.320.28 when combining Pantheon+ SNe Ia with CMB and BAO data. Finally, we find that systematic uncertainties in the use of SNe Ia along the distance ladder comprise less than one-third of the total uncertainty in the measurement of H0 and cannot explain the present “Hubble tension” between local measurements and early universe predictions from the cosmological model.
|
|
7. |
- Bufano, Filomena, et al.
(författare)
-
THE HIGHLY ENERGETIC EXPANSION OF SN 2010bh ASSOCIATED WITH GRB 100316D
- 2012
-
Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 753:1, s. 67-
-
Tidskriftsartikel (refereegranskat)abstract
- We present the spectroscopic and photometric evolution of the nearby (z = 0.059) spectroscopically confirmed Type Ic supernova, SN 2010bh, associated with the soft, long-duration gamma-ray burst (X-ray flash) GRB 100316D. Intensive follow-up observations of SN 2010bh were performed at the ESO Very Large Telescope (VLT) using the X-shooter and FORS2 instruments. Thanks to the detailed temporal coverage and the extended wavelength range (3000-24800 angstrom), we obtained an unprecedentedly rich spectral sequence among the hypernovae, making SN 2010bh one of the best studied representatives of this SN class. We find that SN 2010bh has a more rapid rise to maximum brightness (8.0 +/- 1.0 rest-frame days) and a fainter absolute peak luminosity (L-bol approximate to 3 x 10(42) erg s(-1)) than previously observed SN events associated with GRBs. Our estimate of the ejected Ni-56 mass is 0.12 +/- 0.02 M-circle dot. From the broad spectral features, we measure expansion velocities up to 47,000 km s(-1), higher than those of SNe 1998bw (GRB 980425) and 2006aj (GRB 060218). Helium absorption lines He I lambda 5876 and He I 1.083 mu m, blueshifted by similar to 20,000-30,000 km s(-1) and similar to 28,000-38,000 km s(-1), respectively, may be present in the optical spectra. However, the lack of coverage of the He I 2.058 mu m line prevents us from confirming such identifications. The nebular spectrum, taken at similar to 186 days after the explosion, shows a broad but faint [O I] emission at 6340 angstrom. The light curve shape and photospheric expansion velocities of SN 2010bh suggest that we witnessed a highly energetic explosion with a small ejected mass (E-k approximate to 10(52) erg and M-ej approximate to 3 M-circle dot). The observed properties of SN 2010bh further extend the heterogeneity of the class of GRB SNe.
|
|
8. |
- Camacho-Neves, Yssavo, et al.
(författare)
-
Over 500 Days in the Life of the Photosphere of the Type Iax Supernova SN 2014dt
- 2023
-
Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 951:1
-
Tidskriftsartikel (refereegranskat)abstract
- Type Iax supernovae (SNe Iax) are the largest known class of peculiar white dwarf SNe, distinct from normal Type Ia supernovae (SNe Ia). The unique properties of SNe Iax, especially their strong photospheric lines out to extremely late times, allow us to model their optical spectra and derive the physical parameters of the long-lasting photosphere. We present an extensive spectral timeseries, including 21 new spectra, of SN Iax 2014dt from +11 to +562 days after maximum light. We are able to reproduce the entire timeseries with a self-consistent, nearly unaltered deflagration explosion model from Fink et al. using TARDIS, an open source radiative-transfer code. We find that the photospheric velocity of SN 2014dt slows its evolution between +64 and +148 days, which closely overlaps the phase when we see SN 2014dt diverge from the normal spectral evolution of SNe Ia (+90 to +150 days). The photospheric velocity at these epochs, ∼400–1000 km s−1, may demarcate a boundary within the ejecta below which the physics of SNe Iax and normal SNe Ia differ. Our results suggest that SN 2014dt is consistent with a weak deflagration explosion model that leaves behind a bound remnant and drives an optically thick, quasi-steady-state wind creating the photospheric lines at late times. The data also suggest that this wind may weaken at epochs past +450 days, perhaps indicating a radioactive power source that has decayed away.
|
|
9. |
- Chen, Ping, et al.
(författare)
-
A Linear Relation between the Color Stretch sBV and the Rising Color Slope s0*(B – V) of Type Ia Supernovae
- 2023
-
Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 946:2
-
Tidskriftsartikel (refereegranskat)abstract
- Using data from the Complete Nearby (redshift zhost < 0.02) sample of Type Ia Supernovae (CNIa0.02), we find a linear relation between two parameters derived from the B − V color curves of Type Ia supernovae: the color stretch sBV and the rising color slope s0*(B – V) after the peak, and this relation applies to the full range of sBV. The sBV parameter is known to be tightly correlated with the peak luminosity, especially for fast decliners (dim Type Ia supernovae), and the luminosity correlation with sBV is markedly better than with the classic light-curve width parameters such as Δm15(B). Thus, our new linear relation can be used to infer peak luminosity from s0*. Unlike sBV (or Δm15(B)), the measurement of s0*(B – V) does not rely on a well-determined time of light-curve peak or color maximum, making it less demanding on the light-curve coverage than past approaches.
|
|
10. |
- Chen, Ping, et al.
(författare)
-
The First Data Release of CNIa0.02-A Complete Nearby (Redshift <0.02) Sample of Type Ia Supernova Light Curves
- 2022
-
Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 259:2
-
Tidskriftsartikel (refereegranskat)abstract
- The CNIa0.02 project aims to collect a complete, nearby sample of Type Ia supernovae (SNe Ia) light curves, and the SNe are volume-limited with host-galaxy redshifts zhost < 0.02. The main scientific goal is to infer the distributions of key properties (e.g., the luminosity function) of local SNe Ia in a complete and unbiased fashion in order to study SN explosion physics. We spectroscopically classify any SN candidate detected by the All-Sky Automated Survey for Supernovae (ASAS-SN) that reaches a peak brightness <16.5 mag. Since ASAS-SN scans the full sky and does not target specific galaxies, our target selection is effectively unbiased by host-galaxy properties. We perform multiband photometric observations starting from the time of discovery. In the first data release (DR1), we present the optical light curves obtained for 247 SNe from our project (including 148 SNe in the complete sample), and we derive parameters such as the peak fluxes, Δm15, and sBV.
|
|