SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fitzgerald R. C.) ;lar1:(oru)"

Sökning: WFRF:(Fitzgerald R. C.) > Örebro universitet

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Kooij, J. J. S., et al. (författare)
  • Updated European Consensus Statement on diagnosis and treatment of adult ADHD
  • 2019
  • Ingår i: European psychiatry. - : Cambridge University Press (CUP). - 0924-9338 .- 1778-3585. ; 56, s. 14-34
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundAttention-deficit/hyperactivity disorder (ADHD) is among the most common psychiatric disorders of childhood that often persists into adulthood and old age. Yet ADHD is currently underdiagnosed and undertreated in many European countries, leading to chronicity of symptoms and impairment, due to lack of, or ineffective treatment, and higher costs of illness.MethodsThe European Network Adult ADHD and the Section for Neurodevelopmental Disorders Across the Lifespan (NDAL) of the European Psychiatric Association (EPA), aim to increase awareness and knowledge of adult ADHD in and outside Europe. This Updated European Consensus Statement aims to support clinicians with research evidence and clinical experience from 63 experts of European and other countries in which ADHD in adults is recognized and treated.ResultsBesides reviewing the latest research on prevalence, persistence, genetics and neurobiology of ADHD, three major questions are addressed: (1) What is the clinical picture of ADHD in adults? (2) How should ADHD be properly diagnosed in adults? (3) How should adult ADHDbe effectively treated?ConclusionsADHD often presents as a lifelong impairing condition. The stigma surrounding ADHD, mainly due to lack of knowledge, increases the suffering of patients. Education on the lifespan perspective, diagnostic assessment, and treatment of ADHD must increase for students of general and mental health, and for psychiatry professionals. Instruments for screening and diagnosis of ADHD in adults are available, as are effective evidence-based treatments for ADHD and its negative outcomes. More research is needed on gender differences, and in older adults with ADHD.
  •  
5.
  • Wall, Rebecca, 1979-, et al. (författare)
  • Role of gut microbiota in early infant development
  • 2009
  • Ingår i: Clinical Medicine. - : Sage Publications. - 1178-220X. ; 3, s. 45-54
  • Forskningsöversikt (refereegranskat)abstract
    • Early colonization of the infant gastrointestinal tract is crucial for the overall health of the infant, and establishment and maintenance of non-pathogenic intestinal microbiota may reduce several neonatal inflammatory conditions. Much effort has therefore been devoted to manipulation of the composition of the microbiota through 1) the role of early infant nutrition, particularly breast milk, and supplementation of infant formula with prebiotics that positively influence the enteric microbiota by selectively promoting growth of beneficial bacteria and 2) oral administration of probiotic bacteria which when administered in adequate amounts confer a health benefit on the host. While the complex microbiota of the adult is difficult to change in the long-term, there is greater impact of the diet on infant microbiota as this is not as stable as in adults. Decreasing excessive use of antibiotics and increasing the use of pre- and probiotics have shown to be beneficial in the prevention of several important infant diseases such as necrotizing enterocolitis and atopic eczema as well as improvement of short and long-term health. This review addresses how the composition of the gut microbiota becomes established in early life, its relevance to infant health, and dietary means by which it can be manipulated.
  •  
6.
  • Fouhy, Fiona, et al. (författare)
  • High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin
  • 2012
  • Ingår i: Antimicrobial Agents and Chemotherapy. - Washington, USA : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 56:11, s. 5811-5820
  • Tidskriftsartikel (refereegranskat)abstract
    • The infant gut microbiota undergoes dramatic changes during the first 2 years of life. The acquisition and development of this population can be influenced by numerous factors, and antibiotic treatment has been suggested as one of the most significant. Despite this, however, there have been relatively few studies which have investigated the short-term recovery of the infant gut microbiota following antibiotic treatment. The aim of this study was to use high-throughput sequencing (employing both 16S rRNA and rpoB-specific primers) and quantitative PCR to compare the gut microbiota of nine infants who underwent parenteral antibiotic treatment with ampicillin and gentamicin (within 48 h of birth), 4 and 8 weeks after the conclusion of treatment, relative to that of nine matched healthy controls. The investigation revealed that the gut microbiota of the antibiotic-treated infants had significantly higher proportions of Proteobacteria (P = 0.0049) and significantly lower proportions of Actinobacteria (P = 0.00001) (and the associated genus Bifidobacterium [P = 0.0132]) as well as the genus Lactobacillus (P = 0.0182) than the untreated controls 4 weeks after the cessation of treatment. By week 8, the Proteobacteria levels remained significantly higher in the treated infants (P = 0.0049), but the Actinobacteria, Bifidobacterium, and Lactobacillus levels had recovered and were similar to those in the control samples. Despite this recovery of total Bifidobacterium numbers, rpoB-targeted pyrosequencing revealed that the number of different Bifidobacterium species present in the antibiotic-treated infants was reduced. It is thus apparent that the combined use of ampicillin and gentamicin in early life can have significant effects on the evolution of the infant gut microbiota, the long-term health implications of which remain unknown.
  •  
7.
  • Hussey, Séamus, et al. (författare)
  • Parenteral antibiotics reduce bifidobacteria colonization and diversity in neonates
  • 2011
  • Ingår i: International Journal of Microbiology. - New York USA : Hindawi Publishing Corporation. - 1687-918X .- 1687-9198. ; 2011
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the impact of parenteral antibiotic treatment in the early neonatal period on the evolution of bifidobacteria in the newborn. Nine babies treated with intravenous ampicillin/gentamicin in the first week of life and nine controls (no antibiotic treatment) were studied. Denaturing gradient gel electrophoresis was used to investigate the composition of Bifidobacterium in stool samples taken at four and eight weeks. Bifidobacteria were detected in all control infants at both four and eight weeks, while only six of nine antibiotic-treated infants had detectable bifidobacteria at four weeks and eight of nine at eight weeks. Moreover, stool samples of controls showed greater diversity of Bifidobacterium spp. compared with antibiotic-treated infants. In conclusion, short-term parenteral antibiotic treatment of neonates causes a disturbance in the expected colonization pattern of bifidobacteria in the first months of life. Further studies are required to probiotic determine if supplementation is necessary in this patient group.
  •  
8.
  • Marques, Tatiana M., 1980-, et al. (författare)
  • Gut microbiota modulation and implications for host health: dietary strategies to influence the gut-brain axis
  • 2013
  • Ingår i: Innovative Food Science & Emerging Technologies. - : Elsevier. - 1466-8564 .- 1878-5522. ; 22, s. 239-247
  • Tidskriftsartikel (refereegranskat)abstract
    • The human intestinal microbiota evolves from an immature and unstable ecosystem during infancy into a more complex and stable ecosystem in adulthood. Diet is one of the main factors contributing to the composition and diversity of the human intestinal microbiota. From birth, breast milk offers the best nutritional regime for maturation of the gut, whereas the introduction of solid food selects the most adapted bacteria, converging towards an adult-like microbiota. The gut microbiota plays an important role in host health, influencing the maturation of the immune system and regulating energy metabolism. Moreover, it has become evident that the microbiota can affect brain function and behaviour. On this bidirectional communication between intestine and the central nervous system (CNS), the so called gut-brain axis, the gut influences brain development and biochemistry, whereas the brain affects gastrointestinal function. In this context, probiotics and prebiotics have been used as dietary strategies aimed at improving host health by modulating the gut ecosystem and, consequently, affecting host stress-responses, behaviour and cognition.
  •  
9.
  • Marques, Tatiana M., 1980-, et al. (författare)
  • Influence of GABA and GABA-producing Lactobacillus brevis DPC 6108 on the development of diabetes in a streptozotocin rat model
  • 2016
  • Ingår i: Beneficial Microbes. - Wageningen, Netherlands : Wageningen Academic Publishers. - 1876-2883 .- 1876-2891. ; 7:3, s. 409-420
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to investigate if dietary administration of γ-aminobutyric acid (GABA)-producing Lactobacillus brevis DPC 6108 and pure GABA exert protective effects against the development of diabetes in streptozotocin (STZ)-induced diabetic Sprague Dawley rats. In a first experiment, healthy rats were divided in 3 groups (n=10/group) receiving placebo, 2.6 mg/kg body weight (bw) pure GABA or L. brevis DPC 6108 (~10(9)microorganisms). In a second experiment, rats (n=15/group) were randomised to five groups and four of these received an injection of STZ to induce type 1 diabetes. Diabetic and non-diabetic controls received placebo [4% (w/v) yeast extract in dH2O], while the other three diabetic groups received one of the following dietary supplements: 2.6 mg/kg bw GABA (low GABA), 200 mg/kg bw GABA (high GABA) or ~10(9) L. brevis DPC 6108. L. brevis DPC 6108 supplementation was associated with increased serum insulin levels (P<0.05), but did not alter other metabolic markers in healthy rats. Diabetes induced by STZ injection decreased body weight (P<0.05), increased intestinal length (P<0.05) and stimulated water and food intake. Insulin was decreased (P<0.05), whereas glucose was increased (P<0.001) in all diabetic groups, compared with non-diabetic controls. A decrease (P<0.01) in glucose levels was observed in diabetic rats receiving L. brevis DPC 6108, compared with diabetic-controls. Both the composition and diversity of the intestinal microbiota were affected by diabetes. Microbial diversity in diabetic rats supplemented with low GABA was not reduced (P>0.05), compared with non-diabetic controls while all other diabetic groups displayed reduced diversity (P<0.05). L. brevis DPC 6108 attenuated hyperglycaemia induced by diabetes but additional studies are needed to understand the mechanisms involved in this reduction.
  •  
10.
  • Marques, Tatiana Milena, et al. (författare)
  • Programming infant gut microbiota : influence of dietary and environmental factors
  • 2010
  • Ingår i: Current Opinion in Biotechnology. - Oxford, United Kingdom : Elsevier. - 0958-1669 .- 1879-0429. ; 21:2, s. 149-156
  • Forskningsöversikt (refereegranskat)abstract
    • The neonatal period is crucial for intestinal colonisation, and the composition of this ecosystem in early life is influenced by such factors as mode of birth, environment, diet and antibiotics. The intestinal microbiota contributes to protection against pathogens, maturation of the immune system and metabolic welfare of the host, but under some circumstances can contribute to the pathogenesis of certain diseases. Because colonisation with non-pathogenic microbiota is important for infant health and may affect health in later life, it is important to understand how the composition of this microbial organ is established and by which dietary means (e.g. supplementation with prebiotics/probiotics/food ingredients) it can be programmed in order to achieve an ecosystem that is valuable for the host.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy