SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fliegl Heike) "

Search: WFRF:(Fliegl Heike)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aidas, Kestutis, et al. (author)
  • The Dalton quantum chemistry program system
  • 2014
  • In: Wiley Interdisciplinary Reviews. Computational Molecular Science. - : Wiley. - 1759-0876. ; 4:3, s. 269-284
  • Journal article (peer-reviewed)abstract
    • Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from for a number of UNIX platforms.
  •  
2.
  • Badri, Zahra, et al. (author)
  • All-Metal Aromaticity : Revisiting the Ring Current Model among Transition Metal Clusters
  • 2013
  • In: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 9:11, s. 4789-4796
  • Journal article (peer-reviewed)abstract
    • We present new insight into the nature of aromaticity in metal clusters. We give computational arguments in favor of using the ring-current model over local indices, such as nucleus independent chemical shifts, for the determination of the magnetic aromaticity. Two approaches for estimating magnetically induced ring currents are employed for this purpose, one based on the quantum theory of atoms in molecules (QTAIM) and the other where magnetically induced current densities (MICD) are explicitly calculated. We show that the two-zone aromaticity/antiaromaticity of a number of 3d metallic clusters (Sc-3(-), Cu-3(+), and Cu-4(2-)) can be explained using the QTAIM-based magnetizabilities. The reliability of the calculated atomic and bond magnetizabilities of the metallic clusters are verified by comparison with MICD computed at the multiconfiguration self-consistent field (MCSCF) and density functional levels of theory. Integrated MCSCF current strength susceptibilities as well as a visual analysis of the calculated current densities confirm the interpretations based on the QTAIM magnetizabilities. In view of the new findings, we suggest a simple explanation based on classical electromagnetic theory to explain the anomalous magnetic shielding in different transition metal clusters. Our results suggest that the nature of magnetic aromaticity/antiaromaticity in transition-metal clusters should be assessed more carefully based on global indices.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view