SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fogelström Elsa) ;conttype:(scientificother)"

Sökning: WFRF:(Fogelström Elsa) > Övrigt vetenskapligt/konstnärligt

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahlberg, C. Johan, 1978-, et al. (författare)
  • Population differentiation in timing of development in a forest herb associated with local climate and canopy closure
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Our knowledge of how plant seasonal development is related to local versus larger-scale environmental variation is limited. We investigated differentiation in the timing of vegetative and reproductive development among populations of the forest herb Lathyrus vernus over different spatial scales. We predicted earlier development and shorter development time for populations from a colder, northern region compared to populations from a warmer, southern region. Also, we predicted earlier and shorter development within regions to be associated with colder temperatures and higher proportions of deciduous trees at their sites of origin. Lastly, we predicted that earlier flowering is strongly correlated with earlier start of development. To examine these predictions, we conducted a common garden study, and compared the development of 10 northern and 10 southern Swedish L. vernus populations. Start of development, development time and start of flowering did not differ between populations from the two regions in contrast to our prediction. Within the southern region, start of flowering was earlier in populations from colder sites, while start of development was earlier with colder temperatures within the northern region. Start of flowering occurred earlier in southern populations from sites with higher proportion of deciduous trees. Thus, the prediction for the timing of development within regions was partly confirmed. However, vegetative and reproductive development was not simultaneously influenced by temperature and proportion of deciduous trees within regions, possibly due to the negative correlation between vegetative growth and development time. This implies that earlier start of development or shorter development time not necessarily correspond to earlier start of flowering or vice versa. Overall, the results suggest that smaller scale effects within region, such as temperature and interspecific competition for light, was more important for the timing of development than the larger scale gradients between regions. Lastly, the population differentiation across gradients of temperature and proportion of deciduous trees implies that populations may adapt to long-term changes in light or climatic conditions, and differ in their short-term response to climate change.
  •  
2.
  •  
3.
  • Fogelström, Elsa, 1986- (författare)
  • Plant phenology in seasonal environments
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Phenology, or the seasonal timing life-history events such as emergence, reproduction and senescence will determine the outcome of interactions between plants and both abiotic and biotic aspects of the environment. Such timing is therefore of utmost importance for plants in seasonal environments. In this thesis, I first investigated the factors determining the start, end and length of the growing season for a perennial herb. Secondly, I estimated phenotypic selection on flowering time and investigated to which extent it corresponded to genotypic selection in a natural field setting. Thirdly, I estimated population differentiation in flowering time in a common garden and in the field. Lastly, I experimentally manipulated the synchrony of a perennial herb and its main herbivore to investigate the effects of herbivore phenological preference and plant-herbivore synchrony on the direction of selection on flowering time.I found that flowering individuals emerged earlier in spring than non-flowering individuals and that large individuals senesced later in autumn, suggesting that the length of the growing season is linked to individual condition and resource demands. Phenotypic selection favoured early-flowering individuals, but there was no genotypic selection. I found evidence for genetic population differentiation in flowering time in a common garden but not in the field. This suggests that, although flowering time has a genetic component, the observed variation in flowering time was mainly plastic under natural field conditions. Lastly, I show that constant herbivore preferences of plant phenology, in combination with environmentally driven variation in relative synchrony of the plant and the herbivore, leads to among-year variation in natural selection on flowering time. With this thesis, I contribute to identifying the factors affecting plant phenology as well as of the mechanisms shaping selection on flowering time in perennial plants. Such knowledge is essential for predicting species responses to climate change.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy