SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Forman J) ;mspu:(conferencepaper)"

Sökning: WFRF:(Forman J) > Konferensbidrag

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Gepner, B. D., et al. (författare)
  • Comparison of human body models in frontal crashes with reclined seatback
  • 2019
  • Ingår i: Conference proceedings International Research Council on the Biomechanics of Injury, IRCOBI. - 2235-3151. ; , s. 293-307
  • Konferensbidrag (refereegranskat)abstract
    • Reclined seating configurations, relevant to the future of Autonomous Driving Systems is likely to challenge the current state-of-the-art restraint systems. Human body models (HBM) offer an attractive tool to support the design process, however their validity in the reclined scenario remains questionable. The goal of this study is to compare the response of selected HBMs in the frontal, reclined scenario, while utilizing a new prototype restraint system. A sled model with a generic seat, 50 deg seatback recline angle and a prototype 3-point belt system was used in this study. Four different male HBMs were compared, the Global Human Body Model Consortium (GHBMC) simplified occupant model (GHBMC-S), the GHBMC detailed model (GHBMC-D), Total Human Model for Safety SAFER (THUMS-S) model, and THUMS-v5 model. All HBMs showed good pelvis engagement, except GHBMC-D that submarined under the lap belt. Additionally, large differences were observed in pelvis and lumbar spine response between GHBMC and THUMS family models. Since no relevant PMHS data is currently available, it is impossible to evaluate the biofidelity of these models in the reclined scenarios. Evaluating the relative biofidelity of these models can only be accomplished with experimental data capturing detailed 3D skeletal kinematics and all the boundary forces necessary for model evaluation.
  •  
3.
  • Gepner, B. D., et al. (författare)
  • Evaluation of GHBMC, THUMS and SAFER Human Body Models in Frontal Impacts in Reclined Postures
  • 2022
  • Ingår i: Conference proceedings International Research Council on the Biomechanics of Injury, IRCOBI. - 2235-3151. ; 2022-September, s. 116-143
  • Konferensbidrag (refereegranskat)abstract
    • Virtual tools, such as human body models (HBMs), can support advances in vehicle development and restraint system design. The goal of this study is to evaluate selected HBMs against data from recent reclined post-mortem human subject (PMHS) tests. Three HBMs - the Global Human Body Modelling Consortium detailed model v.6.0, Total Human Model for Safety v.6.0, and SAFER HBM v.10 - were used in this study. The models were positioned with respect to the average PMHS position and utlised a previously developed environment model. The HBMs were evaluated comparing belt engagement, boundary forces and displacements (in the seat and belt), and the trajectories of the head, T1, T8, T11, L1, L3, and pelvis. The HBMs' belt engagement, boundary forces and displacements, and X-direction (fore-aft) trajectories were all generally consistent with the PMHS. All HBMs predicted more downward motion of the head and T1 compared to the PMHS. The HBMs also showed rearward pelvis pitch at peak lap belt force, opposite to the PMHS. Some of these differences were associated with differences in flexion of the lumbar spine. This is the first study to provide an in-depth evaluation of multiple reclined HBMs in frontal crashes compared to reclined PMHS.
  •  
4.
  •  
5.
  • Kilic Afsar, Özgun, et al. (författare)
  • OmniFiber : Integrated Fluidic Fiber Actuators for Weaving Movement based Interactions into the Fabric of Everyday Life'
  • 2021
  • Ingår i: UIST 2021 - Proceedings of the 34th Annual ACM Symposium on User Interface Software and Technology. - New York, NY, USA : Association for Computing Machinery (ACM). ; , s. 1010-1026
  • Konferensbidrag (refereegranskat)abstract
    • Fiber - a primitive yet ubiquitous form of material - intertwines with our bodies and surroundings, from constructing our fibrous muscles that enable our movement, to forming fabrics that intimately interface with our skin. In soft robotics and advanced materials science research, actuated fibers are gaining interest as thin, flexible materials that can morph in response to external stimuli. In this paper, we build on fluidic artificial muscles research to develop OmniFiber - a soft, line-based material system for designing movement-based interactions. We devised actuated thin (øouter < 1.8 mm) fluidic fibers with integrated soft sensors that exhibit perceivably strong forces, up to 19 N at 0.5 MPa, and a high speed of linear actuation peaking at 150mm/s. These allow to flexibly weave them into everyday tangible interactions; including on-body haptic devices for embodied learning, synchronized tangible interfaces for remote communication, and robotic crafting for expressivity. The design of such interactive capabilities is supported by OmniFiber's design space, accessible fabrication pipeline, and a fluidic I/O control system to bring omni-functional fluidic fibers to the HCI toolbox of interactive morphing materials.
  •  
6.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy