SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Forouhi Nita G) ;mspu:(researchreview)"

Search: WFRF:(Forouhi Nita G) > Research review

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Li, Sherly X., et al. (author)
  • Interaction between genes and macronutrient intake on the risk of developing type 2 diabetes : systematic review and findings from European Prospective Investigation into Cancer (EPIC)-InterAct
  • 2017
  • In: American Journal of Clinical Nutrition. - : American society for nutrition. - 0002-9165 .- 1938-3207. ; 106:1, s. 263-275
  • Research review (peer-reviewed)abstract
    • Background: Gene-diet interactions have been reported to contribute to the development of type 2 diabetes (T2D). However, to our knowledge, few examples have been consistently replicated to date. Objective: We aimed to identify existing evidence for genemacronutrient interactions and T2D and to examine the reported interactions in a large-scale study. Design: We systematically reviewed studies reporting genemacronutrient interactions and T2D. We searched the MEDLINE, Human Genome Epidemiology Network, and WHO International Clinical Trials Registry Platform electronic databases to identify studies published up to October 2015. Eligibility criteria included assessment of macronutrient quantity (e.g., total carbohydrate) or indicators of quality (e. g., dietary fiber) by use of self-report or objective biomarkers of intake. Interactions identified in the review were subsequently examined in the EPIC (European Prospective Investigation into Cancer)-InterAct case-cohort study (n = 21,148, with 9403 T2D cases; 8 European countries). Prentice-weighted Cox regression was used to estimate countryspecific HRs, 95% CIs, and P-interaction values, which were then pooled by random-effects meta-analysis. A primary model was fitted by using the same covariates as reported in the published studies, and a second model adjusted for additional covariates and estimated the effects of isocaloric macronutrient substitution. Results: Thirteen observational studies met the eligibility criteria (n < 1700 cases). Eight unique interactions were reported to be significant between macronutrients [carbohydrate, fat, saturated fat, dietary fiber, and glycemic load derived from self-report of dietary intake and circulating n-3 (v-3) polyunsaturated fatty acids] and genetic variants in or near transcription factor 7-like 2 (TCF7L2), gastric inhibitory polypeptide receptor (GIPR), caveolin 2 (CAV2), and peptidase D (PEPD) (P-interaction, 0.05). We found no evidence of interaction when we tried to replicate previously reported interactions. In addition, no interactions were detected in models with additional covariates. Conclusions: Eight gene-macronutrient interactions were identified for the risk of T2D from the literature. These interactions were not replicated in the EPIC-InterAct study, which mirrored the analyses undertaken in the original reports. Our findings highlight the importance of independent replication of reported interactions.
  •  
2.
  • Stubbendorff, Anna, et al. (author)
  • A systematic evaluation of seven different scores representing the EAT–Lancet reference diet and mortality, stroke, and greenhouse gas emissions in three cohorts
  • 2024
  • In: The Lancet Planetary Health. - : Elsevier B.V.. - 2542-5196. ; 8:6, s. e391-
  • Research review (other academic/artistic)abstract
    • Different approaches have been used for translation of the EAT–Lancet reference diet into dietary scores that can be used to assess health and environmental impact. Our aim was to compare the different EAT–Lancet diet scores, and to estimate their associations with all-cause mortality, stroke incidence, and greenhouse gas emissions. We did a systematic review (PROSPERO, CRD42021286597) to identify different scores representing adherence to the EAT–Lancet reference diet. We then qualitatively compared the diet adherence scores, including their ability to group individuals according the EAT–Lancet reference diet recommendations, and quantitatively assessed the associations of the diet scores with health and environmental outcome data in three diverse cohorts: the Danish Diet, Cancer and Health Cohort (DCH; n=52 452), the Swedish Malmö Diet and Cancer Cohort (MDC; n=20 973), and the Mexican Teachers’ Cohort (MTC; n=30 151). The DCH and MTC used food frequency questionnaires and the MDC used a modified diet history method to assess dietary intake, which we used to compute EAT–Lancet diet scores and evaluate the associations of scores with hazard of all-cause mortality and stroke. In the MDC, dietary greenhouse gas emission values were summarised for every participant, which we used to predict greenhouse gas emissions associated with varying diet adherence scores on each scoring system. In our review, seven diet scores were identified (Knuppel et al, 2019; Trijsburg et al, 2020; Cacau et al, 2021; Hanley-Cook et al, 2021; Kesse-Guyot et al, 2021; Stubbendorff et al, 2022; and Colizzi et al, 2023). Two of the seven scores (Stubbendorff and Colizzi) were among the most consistent in grouping participants according to the EAT–Lancet reference diet recommendations across cohorts, and higher scores (greater diet adherence) were associated with decreased risk of mortality (in the DCH and MDC), decreased risk of incident stroke (in the DCH and MDC for the Stubbendorff score; and in the DCH for the Colizzi score), and decreased predicted greenhouse gas emissions in the MDC. We conclude that the seven different scores representing the EAT–Lancet reference diet had differences in construction, interpretation, and relation to disease and climate-related outcomes. Two scores generally performed well in our evaluation. Future studies should carefully consider which diet score to use and preferably use multiple scores to assess the robustness of estimations, given that public health and environmental policy rely on these estimates. 
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view