SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Frölich Lutz) "

Sökning: WFRF:(Frölich Lutz)

  • Resultat 1-10 av 19
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brinkmalm, Ann, et al. (författare)
  • SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer's disease
  • 2014
  • Ingår i: Molecular Neurodegeneration. - : BioMed Central (BMC). - 1750-1326. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Synaptic degeneration is an early pathogenic event in Alzheimer's disease, associated with cognitive impairment and disease progression. Cerebrospinal fluid biomarkers reflecting synaptic integrity would be highly valuable tools to monitor synaptic degeneration directly in patients. We previously showed that synaptic proteins such as synaptotagmin and synaptosomal-associated protein 25 (SNAP-25) could be detected in pooled samples of cerebrospinal fluid, however these assays were not sensitive enough for individual samples. Results: We report a new strategy to study synaptic pathology by using affinity purification and mass spectrometry to measure the levels of the presynaptic protein SNAP-25 in cerebrospinal fluid. By applying this novel affinity mass spectrometry strategy on three separate cohorts of patients, the value of SNAP-25 as a cerebrospinal fluid biomarker for synaptic integrity in Alzheimer's disease was assessed for the first time. We found significantly higher levels of cerebrospinal fluid SNAP-25 fragments in Alzheimer's disease, even in the very early stages, in three separate cohorts. Cerebrospinal fluid SNAP-25 differentiated Alzheimer's disease from controls with area under the curve of 0.901 (P < 0.0001). Conclusions: We developed a sensitive method to analyze SNAP-25 levels in individual CSF samples that to our knowledge was not possible previously. Our results support the notion that synaptic biomarkers may be important tools for early diagnosis, assessment of disease progression, and to monitor drug effects in treatment trials.
  •  
2.
  • Engelborghs, Sebastiaan, et al. (författare)
  • Consensus guidelines for lumbar puncture in patients with neurological diseases
  • 2017
  • Ingår i: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Elsevier. - 2352-8729. ; 8, s. 111-126
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Cerebrospinal fluid collection by lumbar puncture (LP) is performed in the diagnostic workup of several neurological brain diseases. Reluctance to perform the procedure is among others due to a lack of standards and guidelines to minimize the risk of complications, such as post-LP headache or back pain. Methods We provide consensus guidelines for the LP procedure to minimize the risk of complications. The recommendations are based on (1) data from a large multicenter LP feasibility study (evidence level II-2), (2) systematic literature review on LP needle characteristics and post-LP complications (evidence level II-2), (3) discussion of best practice within the Joint Programme Neurodegenerative Disease Research Biomarkers for Alzheimer's disease and Parkinson's Disease and Biomarkers for Multiple Sclerosis consortia (evidence level III). Results Our consensus guidelines address contraindications, as well as patient-related and procedure-related risk factors that can influence the development of post-LP complications. Discussion When an LP is performed correctly, the procedure is well tolerated and accepted with a low complication rate.
  •  
3.
  • Hall, Anette, et al. (författare)
  • Predicting Progression from Cognitive Impairment to Alzheimer's Disease with the Disease State Index
  • 2015
  • Ingår i: Current Alzheimer Research. - : Bentham Science Publishers. - 1875-5828 .- 1567-2050. ; 12:1, s. 69-79
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluated the performance of the Disease State Index (DSI) method when predicting progression to Alzheimer's disease (AD) in patients with subjective cognitive impairment (SCI), amnestic or non-amnestic mild cognitive impairment (aMCI, naMCI). The DSI model measures patients' similarity to diagnosed cases based on available data, such as cognitive tests, the APOE genotype, CSF biomarkers and MRI. We applied the DSI model to data from the DE-SCRIPA cohort, where non-demented patients (N=775) with different subtypes of cognitive impairment were followed for 1 to 5 years. Classification accuracies for the subgroups were calculated with the DSI using leave-one-out cross-validation. The DSI's classification accuracy in predicting progression to AD was 0.75 (AUC=0.83) in the total population, 0.70 (AUC=0.77) for aMCI and 0.71 (AUC=0.76) for naMCI. For a subset of approximately half of the patients with high or low DSI values, accuracy reached 0.86 (all), 0.78 (aMCI), and 0.85 (naMCI). For patients with MRI or CSF biomarker data available, they were 0.78 (all), 0.76 (aMCI) and 0.76 (naMCI), while for clear cases the accuracies rose to 0.90 (all), 0.83 (aMCI) and 0.91 (naMCI). The results show that the DSI model can distinguish between clear and ambiguous cases, assess the severity of the disease and also provide information on the effectiveness of different biomarkers. While a specific test or biomarker may confound analysis for an individual patient, combining several different types of tests and biomarkers could be able to reveal the trajectory of the disease and improve the prediction of AD progression.
  •  
4.
  • Shi, Liu, et al. (författare)
  • Dickkopf-1 Overexpression in vitro Nominates Candidate Blood Biomarkers Relating to Alzheimer's Disease Pathology.
  • 2020
  • Ingår i: Journal of Alzheimer's disease : JAD. - : IOS Press. - 1875-8908 .- 1387-2877. ; 77:3, s. 1353-1368
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies suggest that Dickkopf-1 (DKK1), an inhibitor of Wnt signaling, plays a role in amyloid-induced toxicity and hence Alzheimer's disease (AD). However, the effect of DKK1 expression on protein expression, and whether such proteins are altered in disease, is unknown.We aim to test whether DKK1 induced protein signature obtained in vitro were associated with markers of AD pathology as used in the amyloid/tau/neurodegeneration (ATN) framework as well as with clinical outcomes.We first overexpressed DKK1 in HEK293A cells and quantified 1,128 proteins in cell lysates using aptamer capture arrays (SomaScan) to obtain a protein signature induced by DKK1. We then used the same assay to measure the DKK1-signature proteins in human plasma in two large cohorts, EMIF (n = 785) and ANM (n = 677).We identified a 100-protein signature induced by DKK1 in vitro. Subsets of proteins, along with age and apolipoprotein E ɛ4 genotype distinguished amyloid pathology (A + T-N-, A+T+N-, A+T-N+, and A+T+N+) from no AD pathology (A-T-N-) with an area under the curve of 0.72, 0.81, 0.88, and 0.85, respectively. Furthermore, we found that some signature proteins (e.g., Complement C3 and albumin) were associated with cognitive score and AD diagnosis in both cohorts.Our results add further evidence for a role of DKK regulation of Wnt signaling in AD and suggest that DKK1 induced signature proteins obtained in vitro could reflect theATNframework as well as predict disease severity and progression in vivo.
  •  
5.
  • Shi, Liu, et al. (författare)
  • Discovery and validation of plasma proteomic biomarkers relating to brain amyloid burden by SOMAscan assay.
  • 2019
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Elsevier. - 1552-5279 .- 1552-5260. ; 15:11, s. 1478-1488
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma proteins have been widely studied as candidate biomarkers to predict brain amyloid deposition to increase recruitment efficiency in secondary prevention clinical trials for Alzheimer's disease. Most such biomarker studies are targeted to specific proteins or are biased toward high abundant proteins.4001 plasma proteins were measured in two groups of participants (discovery group = 516, replication group = 365) selected from the European Medical Information Framework for Alzheimer's disease Multimodal Biomarker Discovery study, all of whom had measures of amyloid.A panel of proteins (n = 44), along with age and apolipoprotein E (APOE) ε4, predicted brain amyloid deposition with good performance in both the discovery group (area under the curve = 0.78) and the replication group (area under the curve = 0.68). Furthermore, a causal relationship between amyloid and tau was confirmed by Mendelian randomization.The results suggest that high-dimensional plasma protein testing could be a useful and reproducible approach for measuring brain amyloid deposition.
  •  
6.
  • Stamate, Daniel, et al. (författare)
  • A metabolite-based machine learning approach to diagnose Alzheimer-type dementia in blood : Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort
  • 2019
  • Ingår i: Alzheimer's & Dementia: Translational Research & Clinical Interventions. - : John Wiley & Sons. - 2352-8737. ; 5:C, s. 933-938
  • Tidskriftsartikel (refereegranskat)abstract
    • IntroductionMachine learning (ML) may harbor the potential to capture the metabolic complexity in Alzheimer Disease (AD). Here we set out to test the performance of metabolites in blood to categorize AD when compared to CSF biomarkers.MethodsThis study analyzed samples from 242 cognitively normal (CN) people and 115 with AD‐type dementia utilizing plasma metabolites (n = 883). Deep Learning (DL), Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were used to differentiate AD from CN. These models were internally validated using Nested Cross Validation (NCV).ResultsOn the test data, DL produced the AUC of 0.85 (0.80–0.89), XGBoost produced 0.88 (0.86–0.89) and RF produced 0.85 (0.83–0.87). By comparison, CSF measures of amyloid, p‐tau and t‐tau (together with age and gender) produced with XGBoost the AUC values of 0.78, 0.83 and 0.87, respectively.DiscussionThis study showed that plasma metabolites have the potential to match the AUC of well‐established AD CSF biomarkers in a relatively small cohort. Further studies in independent cohorts are needed to validate whether this specific panel of blood metabolites can separate AD from controls, and how specific it is for AD as compared with other neurodegenerative disorders.
  •  
7.
  • Westwood, Sarah, et al. (författare)
  • Validation of Plasma Proteomic Biomarkers Relating to Brain Amyloid Burden in the EMIF-Alzheimer's Disease Multimodal Biomarker Discovery Cohort.
  • 2020
  • Ingår i: Journal of Alzheimer's disease : JAD. - : IOS Press. - 1875-8908 .- 1387-2877. ; 74:1, s. 213-225
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously investigated, discovered, and replicated plasma protein biomarkers for use to triage potential trials participants for PET or cerebrospinal fluid measures of Alzheimer's disease (AD) pathology. This study sought to undertake validation of these candidate plasma biomarkers in a large, multi-center sample collection. Targeted plasma analyses of 34 proteins with prior evidence for prediction of in vivo pathology were conducted in up to 1,000 samples from cognitively healthy elderly individuals, people with mild cognitive impairment, and in patients with AD-type dementia, selected from the EMIF-AD catalogue. Proteins were measured using Luminex xMAP, ELISA, and Meso Scale Discovery assays. Seven proteins replicated in their ability to predict in vivo amyloid pathology. These proteins form a biomarker panel that, along with age, could significantly discriminate between individuals with high and low amyloid pathology with an area under the curve of 0.74. The performance of this biomarker panel remained consistent when tested in apolipoprotein E ɛ4 non-carrier individuals only. This blood-based panel is biologically relevant, measurable using practical immunocapture arrays, and could significantly reduce the cost incurred to clinical trials through screen failure.
  •  
8.
  • Bocchetta, Martina, et al. (författare)
  • The use of biomarkers for the etiologic diagnosis of MCI in Europe: An EADC survey.
  • 2015
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5279. ; 11:2, s. 195-206
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the use of Alzheimer's disease (AD) biomarkers in European Alzheimer's Disease Consortium centers and assessed their perceived usefulness for the etiologic diagnosis of mild cognitive impairment (MCI). We surveyed availability, frequency of use, and confidence in diagnostic usefulness of markers of brain amyloidosis (amyloid positron emission tomography [PET], cerebrospinal fluid [CSF] Aβ42) and neurodegeneration (medial temporal atrophy [MTA] on MR, fluorodeoxyglucose positron emission tomography [FDG-PET], CSF tau). The most frequently used biomarker is visually rated MTA (75% of the 37 responders reported using it "always/frequently") followed by CSF markers (22%), FDG-PET (16%), and amyloid-PET (3%). Only 45% of responders perceive MTA as contributing to diagnostic confidence, where the contribution was rated as "moderate". Seventy-nine percent of responders felt "very/extremely" comfortable delivering a diagnosis of MCI due to AD when both amyloid and neuronal injury biomarkers were abnormal (P < .02 versus any individual biomarker). Responders largely agreed that a combination of amyloidosis and neuronal injury biomarkers was a strongly indicative AD signature.
  •  
9.
  • Bos, I., et al. (författare)
  • Cerebrospinal fluid biomarkers of neurodegeneration, synaptic integrity, and astroglial activation across the clinical Alzheimer's disease spectrum
  • 2019
  • Ingår i: Alzheimers & Dementia. - : Elsevier. - 1552-5260 .- 1552-5279. ; 15:5, s. 644-654
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: We investigated relations between amyloid-beta (A beta) status, apolipoprotein E (APOE) e4, and cognition, with cerebrospinal fluid markers of neurogranin (Ng), neurofilament light (NFL), YKL-40, and total tau (T-tau). Methods: We included 770 individuals with normal cognition, mild cognitive impairment, and Alzheimer's disease (AD)-type dementia from the EMIF-AD Multimodal Biomarker Discovery study. We tested the association of Ng, NFL, YKL-40, and T-tau with A beta status (Ab beta- vs. A beta+), clinical diagnosis APOE epsilon 4 carriership, baseline cognition, and change in cognition. Results: Ng and T-tau distinguished between A beta+ from A beta- individuals in each clinical group, whereas NFL and YKL-40 were associated with A beta+ in nondemented individuals only. APOE epsilon 4 carriership did not influence NFL, Ng, and YKL-40 in A beta+ individuals. NFL was the best predictor of cognitive decline in A beta+ individuals across the cognitive spectrum. Discussion: Axonal degeneration, synaptic dysfunction, astroglial activation, and altered tau metabolism are involved already in preclinical AD. NFL may be a useful prognostic marker. (C) 2019 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
  •  
10.
  • Bos, Isabelle, et al. (författare)
  • The frequency and influence of dementia risk factors in prodromal Alzheimer's disease
  • 2017
  • Ingår i: Neurobiology of Aging. - : Elsevier. - 0197-4580 .- 1558-1497. ; 56, s. 33-40
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated whether dementia risk factors were associated with prodromal Alzheimer's disease (AD) according to the International Working Group-2 and National Institute of Aging-Alzheimer's Association criteria, and with cognitive decline. A total of 1394 subjects with mild cognitive impairment from 14 different studies were classified according to these research criteria, based on cognitive performance and biomarkers. We compared the frequency of 10 risk factors between the subgroups, and used Cox-regression to examine the effect of risk factors on cognitive decline. Depression, obesity, and hypercholesterolemia occurred more often in individuals with low-AD-likelihood, compared with those with a high-AD-likelihood. Only alcohol use increased the risk of cognitive decline, regardless of AD pathology. These results suggest that traditional risk factors for AD are not associated with prodromal AD or with progression to dementia, among subjects with mild cognitive impairment. Future studies should validate these findings and determine whether risk factors might be of influence at an earlier stage (i.e., preclinical) of AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy