SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Frouin Vincent) ;lar1:(umu)"

Sökning: WFRF:(Frouin Vincent) > Umeå universitet

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hadj-Selem, Fouad, et al. (författare)
  • Continuation of Nesterov's Smoothing for Regression With Structured Sparsity in High-Dimensional Neuroimaging
  • 2018
  • Ingår i: IEEE Transactions on Medical Imaging. - : IEEE. - 0278-0062 .- 1558-254X. ; 37:11, s. 2403-2413
  • Tidskriftsartikel (refereegranskat)abstract
    • Predictive models can be used on high-dimensional brain images to decode cognitive states or diagnosis/prognosis of a clinical condition/evolution. Spatial regularization through structured sparsity offers new perspectives in this context and reduces the risk of overfitting the model while providing interpretable neuroimaging signatures by forcing the solution to adhere to domain-specific constraints. Total variation (TV) is a promising candidate for structured penalization: it enforces spatial smoothness of the solution while segmenting predictive regions from the background. We consider the problem of minimizing the sum of a smooth convex loss, a non-smooth convex penalty (whose proximal operator is known) and a wide range of possible complex, non-smooth convex structured penalties such as TV or overlapping group Lasso. Existing solvers are either limited in the functions they can minimize or in their practical capacity to scale to high-dimensional imaging data. Nesterov’s smoothing technique can be used to minimize a large number of non-smooth convex structured penalties. However, reasonable precision requires a small smoothing parameter, which slows down the convergence speed to unacceptable levels. To benefit from the versatility of Nesterov’s smoothing technique, we propose a first order continuation algorithm, CONESTA, which automatically generates a sequence of decreasing smoothing parameters. The generated sequence maintains the optimal convergence speed toward any globally desired precision. Our main contributions are: gap to probe the current distance to the global optimum in order to adapt the smoothing parameter and the To propose an expression of the duality convergence speed. This expression is applicable to many penalties and can be used with other solvers than CONESTA. We also propose an expression for the particular smoothing parameter that minimizes the number of iterations required to reach a given precision. Furthermore, we provide a convergence proof and its rate, which is an improvement over classical proximal gradient smoothing methods. We demonstrate on both simulated and high-dimensional structural neuroimaging data that CONESTA significantly outperforms many state-of-the-art solvers in regard to convergence speed and precision.
  •  
2.
  • Löfstedt, Tommy, et al. (författare)
  • Simulated Data for Linear Regression with Structured and Sparse Penalties: Introducing pylearn-simulate
  • 2018
  • Ingår i: Journal of Statistical Software. - : Foundation for Open Access Statistics. - 1548-7660. ; 87:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A currently very active field of research is how to incorporate structure and prior knowledge in machine learning methods. It has lead to numerous developments in the field of non-smooth convex minimization. With recently developed methods it is possible to perform an analysis in which the computed model can be linked to a given structure of the data and simultaneously do variable selection to find a few important features in the data. However, there is still no way to unambiguously simulate data to test proposed algorithms, since the exact solutions to such problems are unknown.The main aim of this paper is to present a theoretical framework for generating simulated data. These simulated data are appropriate when comparing optimization algorithms in the context of linear regression problems with sparse and structured penalties. Additionally, this approach allows the user to control the signal-to-noise ratio, the correlation structure of the data and the optimization problem to which they are the solution.The traditional approach is to simulate random data without taking into account the actual model that will be fit to the data. But when using such an approach it is not possible to know the exact solution of the underlying optimization problem. With our contribution, it is possible to know the exact theoretical solution of a penalized linear regression problem, and it is thus possible to compare algorithms without the need to use, e.g., cross-validation.We also present our implementation, the Python package pylearn-simulate, available at https://github.com/neurospin/pylearn-simulate and released under the BSD 3clause license. We describe the package and give examples at the end of the paper.
  •  
3.
  • Löfstedt, Tommy, et al. (författare)
  • Structured Variable Selection for Regularized Generalized Canonical Correlation Analysis
  • 2016
  • Ingår i: MULTIPLE FACETS OF PARTIAL LEAST SQUARES AND RELATED METHODS. - Cham : SPRINGER INT PUBLISHING AG. - 9783319406435 - 9783319406411 ; , s. 129-139
  • Konferensbidrag (refereegranskat)abstract
    • Regularized Generalized Canonical Correlation Analysis (RGCCA) extends regularized canonical correlation analysis to more than two sets of variables. Sparse GCCA(SGCCA) was recently proposed to address the issue of variable selection. However, the variable selection scheme offered by SGCCA is limited to the covariance (tau = 1) link between blocks. In this paper we go beyond the covariance link by proposing an extension of SGCCA for the full RGCCA model. (tau epsilon [0; 1]). In addition, we also propose an extension of SGCCA that exploits pre-given structural relationships between variables within blocks. Specifically, we propose an algorithm that allows structured and sparsity-inducing penalties to be included in the RGCCA optimization problem.
  •  
4.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
5.
  • Boen, Rune, et al. (författare)
  • Beyond the global brain differences : intraindividual variability differences in 1q21.1 distal and 15q11.2 bp1-bp2 deletion carriers
  • 2024
  • Ingår i: Biological Psychiatry. - 0006-3223 .- 1873-2402. ; 95:2, s. 147-160
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants exhibit regional and global brain differences compared with noncarriers. However, interpreting regional differences is challenging if a global difference drives the regional brain differences. Intraindividual variability measures can be used to test for regional differences beyond global differences in brain structure.Methods: Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n = 30) and duplication (n = 27) and 15q11.2 BP1-BP2 deletion (n = 170) and duplication (n = 243) carriers and matched noncarriers (n = 2350). Regional intra-deviation scores, i.e., the standardized difference between an individual's regional difference and global difference, were used to test for regional differences that diverge from the global difference.Results: For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate, and temporal pole differed less and regions in the prefrontal and superior temporal cortex differed more than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thickness in regions in the medial visual cortex, auditory cortex, and temporal pole differed less and the prefrontal and somatosensory cortex differed more than the global difference in cortical thickness.Conclusions: We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants. The results provide new insight into brain profiling of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants, with the potential to increase understanding of the mechanisms involved in altered neurodevelopment.
  •  
6.
  • de Pierrefeu, Amicie, et al. (författare)
  • Structured Sparse Principal Components Analysis With the TV-Elastic Net Penalty
  • 2018
  • Ingår i: IEEE Transactions on Medical Imaging. - : IEEE. - 0278-0062 .- 1558-254X. ; 37:2, s. 396-407
  • Tidskriftsartikel (refereegranskat)abstract
    • Principal component analysis (PCA) is an exploratory tool widely used in data analysis to uncover the dominant patterns of variability within a population. Despite its ability to represent a data set in a low-dimensional space, PCA’s interpretability remains limited. Indeed, the components produced by PCA are often noisy or exhibit no visually meaningful patterns. Furthermore, the fact that the components are usually non-sparse may also impede interpretation, unless arbitrary thresholding is applied. However, in neuroimaging, it is essential to uncover clinically interpretable phenotypic markers that would account for the main variability in the brain images of a population. Recently, some alternatives to the standard PCA approach, such as sparse PCA (SPCA), have been proposed, their aim being to limit the density of the components. Nonetheless, sparsity alone does not entirely solve the interpretability problem in neuroimaging, since it may yield scattered andunstable components. We hypothesized that the incorporation of prior information regarding the structure of the data may lead to improved relevance and interpretability of brain patterns. We therefore present a simple extension of the popular PCA framework that adds structured sparsity penalties on the loading vectors in order to identify the few stable regions in the brain images that capture most of the variability. Such structured sparsity can be obtained by combining, e.g., l1 and total variation (TV) penalties, where the TV regularization encodes information on the underlying structure of the data. This paper presents the structured SPCA (denoted SPCA-TV) optimization framework and its resolution. We demonstrate SPCA-TV’s effectiveness and versatility on three different data sets. It can be applied to any kind of structured data, such as, e.g., N-dimensional array images or meshes of cortical surfaces. The gains of SPCA-TV over unstructured approaches (such as SPCA and ElasticNet PCA) or structured approach (such as GraphNet PCA) are significant, since SPCA-TV reveals the variability within a data set in the form of intelligible brain patterns that are easier to interpret and more stable across different samples.
  •  
7.
  • Dubois, Mathieu, et al. (författare)
  • Predictive support recovery with TV-Elastic Net penalty and logistic regression: An application to structural MRI
  • 2014
  • Konferensbidrag (refereegranskat)abstract
    • The use of machine-learning in neuroimaging offers new perspectives in early diagnosis and prognosis of brain diseases. Although such multivariate methods can capture complex relationships in the data, traditional approaches provide irregular (l12 penalty) or scattered (l1 penalty) predictive pattern with a very limited relevance. A penalty like Total Variation (TV) that exploits the natural 3D structure of the images can increase the spatial coherence of the weight map. However, TV penalization leads to non-smooth optimization problems that are hard to minimize. We propose an optimization framework that minimizes any combination of l1, l2, and TV penalties while preserving the exact l1 penalty. This algorithm uses Nesterov's smoothing technique to approximate the TV penalty with a smooth function such that the loss and the penalties are minimized with an exact accelerated proximal gradient algorithm. We propose an original continuation algorithm that uses successively smaller values of the smoothing parameter to reach a prescribed precision while achieving the best possible convergence rate. This algorithm can be used with other losses or penalties. The algorithm is applied on a classification problem on the ADNI dataset. We observe that the TV penalty does not necessarily improve the prediction but provides a major breakthrough in terms of support recovery of the predictive brain regions.
  •  
8.
  • Sonderby, Ida E., et al. (författare)
  • Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia
  • 2020
  • Ingår i: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 25:3, s. 584-602
  • Tidskriftsartikel (refereegranskat)abstract
    • Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = −0.71 to −1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = −0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10−6, 1.7 × 10−9, 3.5 × 10−12 and 1.0 × 10−4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.
  •  
9.
  • Sønderby, Ida E., et al. (författare)
  • 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans
  • 2021
  • Ingår i: Translational Psychiatry. - : Nature Publishing Group. - 2158-3188. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers-the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function.
  •  
10.
  • van der Meer, Dennis, et al. (författare)
  • Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition
  • 2020
  • Ingår i: JAMA psychiatry. - : American Medical Association (AMA). - 2168-6238 .- 2168-622X. ; 77:4, s. 420-430
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities.Objective: To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance.Design, Setting, and Participants: In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019.Main Outcomes and Measures: The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort.Results: Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = -0.41; SE, 0.08; P = 4.9 × 10-8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10-7), and a smaller nucleus accumbens (Cohen d = -0.27; SE, 0.07; P = 7.3 × 10-5). There was also a significant negative dose response on cortical thickness (β = -0.24; SE, 0.05; P = 6.8 × 10-7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks.Conclusions and Relevance: These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (8)
konferensbidrag (2)
Typ av innehåll
refereegranskat (10)
Författare/redaktör
Frouin, Vincent (10)
Agartz, Ingrid (5)
Westlye, Lars T (5)
Andreassen, Ole A (5)
de Geus, Eco J. C. (5)
Boomsma, Dorret I. (5)
visa fler...
Cichon, Sven (5)
Le Hellard, Stephani ... (5)
Crespo-Facorro, Bene ... (5)
Tordesillas-Gutierre ... (5)
Wittfeld, Katharina (5)
Teumer, Alexander (5)
Armstrong, Nicola J. (5)
de Zubicaray, Greig ... (5)
Donohoe, Gary (5)
Ehrlich, Stefan (5)
Espeseth, Thomas (5)
Fisher, Simon E. (5)
Glahn, David C. (5)
Ching, Christopher R ... (4)
Brouwer, Rachel M (4)
Thompson, Paul M (4)
Andersson, Micael (4)
Martin, Nicholas G. (4)
Haavik, Jan (4)
Kaufmann, Tobias (4)
van der Meer, Dennis (4)
Djurovic, Srdjan (4)
Thalamuthu, Anbupala ... (4)
Hashimoto, Ryota (4)
Schofield, Peter R (4)
Jacquemont, Sebastie ... (4)
Nyberg, Lars, 1966- (4)
Ames, David (4)
Hottenga, Jouke-Jan (4)
Jahanshad, Neda (4)
Groenewold, Nynke A (4)
Stein, Dan J (4)
Sachdev, Perminder S ... (4)
Medland, Sarah E (4)
Grabe, Hans J. (4)
Schork, Andrew J (4)
Desrivieres, Sylvane (4)
Schumann, Gunter (4)
Ophoff, Roel A (4)
Brodaty, Henry (4)
Caspers, Svenja (4)
Fukunaga, Masaki (4)
Hehir-Kwa, Jayne Y. (4)
Jockwitz, Christiane (4)
visa färre...
Lärosäte
Karolinska Institutet (5)
Göteborgs universitet (1)
Stockholms universitet (1)
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (6)
Naturvetenskap (5)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy