SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fu Dongxu) "

Sökning: WFRF:(Fu Dongxu)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Fu, Jinrong, et al. (författare)
  • Anti-apoptotic role for C1 inhibitor in ischemia/reperfusion-induced myocardial cell injury.
  • 2006
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 349:2, s. 504-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Complement activation augments myocardial cell injury and apoptosis during ischemia/reperfusion (I/R), whereas complement system inhibition with C1 inhibitor (C1INH), a serine protease inhibitor, exerts markedly cardioprotective effects. Our recent data demonstrate that C1INH prevents vascular endothelial cell apoptosis and a "modified" form of the reactive center loop-cleaved, inactive C1INH (iC1INH) plays an anti-inflammatory role in endotoxin shock. The aim of this study was to determine whether C1INH protects against myocardial cell injury via an anti-apoptotic activity or anti-inflammatory effect. In a rat model of acute myocardial infarction (AMI) induced by I/R, administration of C1INH protected against cardiomyocytic apoptosis via normalization of ratio of the Bcl-2/Bax expression in the myocardial infarct area. C1INH improved parameters of cardiac function and hemodynamics and reduced myocardial infarct size (MIS). In addition, myocardial and blood myeloperoxidase (MPO) activity, a marker of neutrophil infiltration, was decreased by treatment of C1INH. In cultured H9c2 rat cardiomyocytic cells, C1INH blocked hypoxia/reoxygenation-induced apoptosis in the absence of sera associated with inhibition of cytochrome c translocation and suppression of caspase-3 activation. The proportion of Bcl-2/Bax expression induced by hypoxia/reoxygenation was reversed by C1INH. Importantly, iC1INH also revealed these similar effects, indicating that C1INH has a direct anti-apoptotic activity. Therefore, these studies support the hypothesis that C1INH, in addition to inhibition of activation of the complement and contact systems, improves outcome in I/R-mediated myocardial cell injury via an anti-apoptotic activity independent of serine protease inhibitory activity.
  •  
3.
  • Fu, Jinrong, et al. (författare)
  • Anti-ischemia/reperfusion of C1 inhibitor in myocardial cell injury via regulation of local myocardial C3 activity.
  • 2006
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 350:1, s. 162-8
  • Tidskriftsartikel (refereegranskat)abstract
    • C3 is common to all pathways of complement activation augmenting ischemia/reperfusion (I/R)-induced myocardial injury and cardiac dysfunction. Complement inhibition with the complement regulatory protein, C1 inhibitor (C1INH), obviously exerts cardioprotective effects. Here, we examine whether C1INH regulates C3 activity in the ischemic myocardial tissue. C1INH markedly suppressed C3 mRNA expression and protein synthesis in both a model of I/R-induced rat acute myocardial infarction (AMI) and the cultured rat H9c2 heart myocytes. At least, this regulation was at the transcriptional level in response to oxygen tension. In vitro, C3 deposition on, and binding to, the surface of rat myocardial cells were significantly blocked by C1INH treatment. C1INH could inhibit classical complement-mediated cell lysis via suppressing the biological activity of C3. Therefore, C1INH, in addition to inhibition of the systemic complement activation, prevents myocardial cell injury via a direct inhibitory role in the local myocardial C3 activity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy