SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fu Yifeng 1984) ;mspu:(researchreview)"

Search: WFRF:(Fu Yifeng 1984) > Research review

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bao, Jie, et al. (author)
  • Synthesis and Applications of Two-Dimensional Hexagonal Boron Nitride in Electronics Manufacturing
  • 2016
  • In: Electronic Materials Letters. - : Springer Science and Business Media LLC. - 1738-8090 .- 2093-6788. ; 12:1, s. 1-16
  • Research review (peer-reviewed)abstract
    • In similarity to graphene, two-dimensional (2D) hexagonal boron nitride (hBN) has some remarkable properties, such as mechanical robustness and high thermal conductivity. In addition, hBN has superb chemical stability and it is electrically insulating. 2D hBN has been considered a promising material for many applications in electronics, including 2D hBN based substrates, gate dielectrics for graphene transistors and interconnects, and electronic packaging insulators. This paper reviews the synthesis, transfer and fabrication of 2D hBN films, hBN based composites and hBN-based van der Waals heterostructures. In particular, this review focuses on applications in manufacturing electronic devices where the insulating and thermal properties of hBN can potentially be exploited. 2D hBN and related composite systems are emerging as new and industrially important materials, which could address many challenges in future complex electronics devices and systems.
  •  
2.
  • Fu, Yifeng, 1984, et al. (author)
  • Thermal Characterization of Low-Dimensional Materials by Resistance Thermometers
  • 2019
  • In: Materials. - : MDPI AG. - 1996-1944. ; 12:11
  • Research review (peer-reviewed)abstract
    • The design, fabrication, and use of a hotspot-producing and temperature-sensing resistance thermometer for evaluating the thermal properties of low-dimensional materials are described in this paper. The materials that are characterized include one-dimensional (1D) carbon nanotubes, and two-dimensional (2D) graphene and boron nitride films. The excellent thermal performance of these materials shows great potential for cooling electronic devices and systems such as in three-dimensional (3D) integrated chip-stacks, power amplifiers, and light-emitting diodes. The thermometers are designed to be serpentine-shaped platinum resistors serving both as hotspots and temperature sensors. By using these thermometers, the thermal performance of the abovementioned emerging low-dimensional materials was evaluated with high accuracy.
  •  
3.
  • Liu, Johan, 1960, et al. (author)
  • Carbon Nanotubes for Electronics Manufacturing and Packaging: From Growth to Integration
  • 2013
  • In: Advances in Manufacturing. - : Springer Science and Business Media LLC. - 2095-3127 .- 2195-3597. ; 1:1, s. 13-27
  • Research review (peer-reviewed)abstract
    • Carbon nanotubes (CNTs) possess excellent electrical, thermal and mechanical properties. They are light in weight yet stronger than most of the other materials. They can be made both highly conductive and semi-conductive. They can be made from nano-sized small catalyst particles and extend to tens of millimeters long. Since CNTs emerged as a hot topic in the early 1990s, numerous research efforts have been spent on the study of the various properties of this new material. CNTs have been proposed as alternative materials of potential excellence in a lot of applications such as electronics, chemical sensors, mechanical sensors/actuators and composite materials, etc. This paper reviews the use of CNTs particularly in electronics manufacturing and packaging field. The progresses of three most important applications, including CNT-based thermal interface materials, CNT-based interconnections and CNT-based cooling devices are reviewed. The growth and post-growth processing of CNTs for specific applications are introduced and the tailoring of CNTs properties, i.e., electrical resistivity, thermal conductivity and strength, etc., is discussed with regard to specific application requirement. As the semiconductor industry is still driven by the need of getting smaller and faster, CNTs and the related composite systems as emerging new materials are likely to provide the solution to the future challenges as we make more and more complex electronics devices and systems.
  •  
4.
  • Sun, Jie, 1977, et al. (author)
  • Synthesis Methods of Two-Dimensional MoS2: A Brief Review
  • 2017
  • In: Crystals. - : MDPI AG. - 2073-4352. ; 7:7, s. Article no 198 -
  • Research review (peer-reviewed)abstract
    • Molybdenum disulfide (MoS2) is one of the most important two-dimensional materials after graphene. Monolayer MoS2 has a direct bandgap (1.9 eV) and is potentially suitable for post-silicon electronics. Among all atomically thin semiconductors, MoS2's synthesis techniques are more developed. Here, we review the recent developments in the synthesis of hexagonal MoS2, where they are categorized into top-down and bottom-up approaches. Micromechanical exfoliation is convenient for beginners and basic research. Liquid phase exfoliation and solutions for chemical processes are cheap and suitable for large-scale production; yielding materials mostly in powders with different shapes, sizes and layer numbers. MoS2 films on a substrate targeting high-end nanoelectronic applications can be produced by chemical vapor deposition, compatible with the semiconductor industry. Usually, metal catalysts are unnecessary. Unlike graphene, the transfer of atomic layers is omitted. We especially emphasize the recent advances in metalorganic chemical vapor deposition and atomic layer deposition, where gaseous precursors are used. These processes grow MoS2 with the smallest building-blocks, naturally promising higher quality and controllability. Most likely, this will be an important direction in the field. Nevertheless, today none of those methods reproducibly produces MoS2 with competitive quality. There is a long way to go for MoS2 in real-life electronic device applications.
  •  
5.
  • Zhao, Changhong, 1982, et al. (author)
  • Synthesis of graphene quantum dots and their applications in drug delivery
  • 2020
  • In: Journal of Nanobiotechnology. - : Springer Science and Business Media LLC. - 1477-3155. ; 18:1
  • Research review (peer-reviewed)abstract
    • This review focuses on the recent advances in the synthesis of graphene quantum dots (GQDs) and their applications in drug delivery. To give a brief understanding about the preparation of GQDs, recent advances in methods of GQDs synthesis are first presented. Afterwards, various drug delivery-release modes of GQDs-based drug delivery systems such as EPR-pH delivery-release mode, ligand-pH delivery-release mode, EPR-Photothermal delivery-Release mode, and Core/Shell-photothermal/magnetic thermal delivery-release mode are reviewed. Finally, the current challenges and the prospective application of GQDs in drug delivery are discussed.[Figure not available: see fulltext.]
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view