SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fu Yifeng 1984) ;pers:(Ye Lilei)"

Sökning: WFRF:(Fu Yifeng 1984) > Ye Lilei

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Johan, 1960, et al. (författare)
  • 1. Thermal Characterization of Power Devices Using Graphene-based Film
  • 2014
  • Ingår i: Proceedings - Electronic Components and Technology Conference. - 0569-5503. - 9781479924073 ; , s. 459 - 463
  • Konferensbidrag (refereegranskat)abstract
    • Due to its atomic structure with sp2 hybrid orbitals and unique electronic properties, graphene has an extraordinarily high thermal conductivity which has been reported to be up to 5000 W/mK. As a consequence, the use of graphene-based materials for thermal management has been subject to substantial attention during recent years in both academia and industry. In this paper, the development of a new type of graphene-based thin film for heat dissipation in power devices is presented. The surface of the developed graphene based film is primarily composed of functionalized graphene oxide, that can be bonded chemically to the device surface and thus minimize the interface thermal resistance caused by surface roughness. A very high in-plane thermal conductivity with a maximum value of 1600 W/mK was detected by laser flash machine regarding to the graphene-based films. To investigate the structure of the graphene-based films, scanning electron microscopy (SEM) and raman spectroscopy were carried out. Finally, LED demonstrators were built to illustrate the thermal performance of graphene-based film and the functional layers. IR camera recorded a 5°C lower temperature of a LED demonstrator with SHT G1000 as the binding layer instead of a commercial thermal conductive adhesive.
  •  
2.
  •  
3.
  • Bao, Jie, et al. (författare)
  • Synthesis and Applications of Two-Dimensional Hexagonal Boron Nitride in Electronics Manufacturing
  • 2016
  • Ingår i: Electronic Materials Letters. - : Springer Science and Business Media LLC. - 1738-8090 .- 2093-6788. ; 12:1, s. 1-16
  • Forskningsöversikt (refereegranskat)abstract
    • In similarity to graphene, two-dimensional (2D) hexagonal boron nitride (hBN) has some remarkable properties, such as mechanical robustness and high thermal conductivity. In addition, hBN has superb chemical stability and it is electrically insulating. 2D hBN has been considered a promising material for many applications in electronics, including 2D hBN based substrates, gate dielectrics for graphene transistors and interconnects, and electronic packaging insulators. This paper reviews the synthesis, transfer and fabrication of 2D hBN films, hBN based composites and hBN-based van der Waals heterostructures. In particular, this review focuses on applications in manufacturing electronic devices where the insulating and thermal properties of hBN can potentially be exploited. 2D hBN and related composite systems are emerging as new and industrially important materials, which could address many challenges in future complex electronics devices and systems.
  •  
4.
  • Fazi, Andrea, 1992, et al. (författare)
  • Multiple growth of graphene from a pre-dissolved carbon source
  • 2020
  • Ingår i: Nanotechnology. - : IOP Publishing. - 1361-6528 .- 0957-4484. ; 31:34, s. 345601-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mono- to few-layer graphene materials are successfully synthesized multiple times using Cu-Ni alloy as a catalyst after a single-chemical vapor deposition (CVD) process. The multiple synthesis is realized by extracting carbon source pre-dissolved in the catalyst substrate. Firstly, graphene is grown by the CVD method on Cu-Ni catalyst substrates. Secondly, the same Cu-Nicatalyst foils are annealed, in absence of any external carbon precursor, to grow graphene using the carbon atoms pre-dissolved in the catalyst during the CVD process. This annealing process is repeated to synthesize graphene successfully until carbon is exhausted in the Cu-Ni foils. After the CVD growth and each annealing growth process, the as-grown graphene is removed using a bubbling transfer method. A wide range of characterizations are performed to examine the quality of the obtained graphene material and to monitor the carbon concentration in the catalyst substrates. Results show that graphene from each annealing growth process possesses a similar quality, which confirmed the good reproducibility of the method. This technique brings great freedom to graphene growth and applications, and it could be also used for other 2D material synthesis.
  •  
5.
  • Fu, Yifeng, 1984, et al. (författare)
  • Carbon nanotube growth on different underlayers for thermal interface material application
  • 2016
  • Ingår i: IMAPS Nordic Annual Conference 2016 Proceedings. - 9781510827226
  • Konferensbidrag (refereegranskat)abstract
    • Thermal interface material (TIM) is a critical component in thermal management of high density packaging systems since both the reliability and lifetime of microsystems are dependent on how the heat is dissipated. Carbon nanotubes (CNTs) are promising candidate for development of TIMs due to their excellent thermal and mechanical properties. The thermal conductivity of CNTs can be up to 3000 W/mK in the longitudinal direction which acts as ideal heat transfer path. However, the huge interfacial thermal resistance between CNTs and contact surface hinders the exploitation of CNTs as TIMs. In this paper, we will focus on the growth of CNTs on various substrates and underlayers and analyze the interaction between catalyst and underlayer materials. Microscopic analysis is performed to characterize the quality of the CNT materials and monitor the diffusion of Fe particles into different barrier layers. Thermal conductivity of the CNT TIMs will be measured to examine the performance of the materials.
  •  
6.
  • han, Hao xue, et al. (författare)
  • Enhanced Heat Spreader Based on Few-Layer Graphene Intercalated With Silane-Functionalization Molecules
  • 2014
  • Ingår i: IEEE 20th International Workshop on Thermal Investigation of ICs and Systems (Therminic). Greenwich, London, United Kingdom, 24-26 September 2014. - 9781479954155 ; , s. 1-4
  • Konferensbidrag (refereegranskat)abstract
    • We studied the heat-spreading enhancement of supported few-layer graphene by inserting silane-functionalization molecules between graphene sheets. We calculated the overall thermal resistance of graphene-substrate interface and the in-plane thermal conductivity of graphene sheets by equilibrium molecular dynamics simulations. We probed the spectral phonon transmission coefficient by non-equilibrium Green's function to characterize the local heat conduction through the interface. Our results show that the overal thermal resistance between the substrate graphene and the upper two-layer graphene underwent a three-fold increase by the presence of the molecules, while the local heat conduction from the hot spot to the graphene sheets through the molecules was largely intensified. Furthermore, the in-plane thermal conductivity of the few-layer graphene increased by 60% compared with the supported graphene non-bonded to the substrate through the molecules. This increase is attributed to the refrained cross-plane phonon scattering which in turn reinforces the in-plane heat conduction of the few-layer graphene. In summary, we proved that by inserting silane-functionalization molecules, the few-layer graphene becomes an ideal candidate for heat spreading by guiding heat more efficiently away from the heat source.
  •  
7.
  • Hansson, Josef, 1991, et al. (författare)
  • Effects of high temperature treatment of carbon nanotube arrays on graphite : Increased crystallinity, anchoring and inter-tube bonding
  • 2020
  • Ingår i: Nanotechnology. - : Institute of Physics Publishing (IOPP). - 0957-4484 .- 1361-6528. ; 31:45
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermal treatment of carbon nanotubes (CNTs) can significantly improve their mechanical, electrical and thermal properties due to reduced defects and increased crystallinity. In this work we investigate the effect of annealing at 3000 degrees C of vertically aligned CNT arrays synthesized by chemical vapor deposition (CVD) on graphite. Raman measurements show a drastically reduced amount of defects and, together with transmission electron microscope (TEM) diffraction measurements, an increased average crystallite size of around 50%, which corresponds to a 124% increase in Young's modulus. We also find a tendency for CNTs to bond to each other with van der Waals (vdW) forces, which causes individual CNTs to closely align with each other. This bonding causes a densification effect on the entire CNT array, which appears at temperatures >1000 degrees C. The densification onset temperature corresponds to the thermal decomposition of oxygen containing functional groups, which otherwise prevents close enough contact for vdW bonding. Finally, the remaining CVD catalyst on the bottom of the CNT array is evaporated during annealing, enabling direct anchoring of the CNTs to the underlying graphite substrate.
  •  
8.
  • Huang, Shirong, et al. (författare)
  • Infrared Emissivity Measurement for Vertically Aligned Multiwall Carbon Nanotubes (CNTs) Based Heat Spreader Applied in High Power Electronics Packaging
  • 2016
  • Ingår i: 6th Electronic System-integration Technology Conference (ESTC 2016). - 9781509014026 ; , s. Article no 7764696-
  • Konferensbidrag (refereegranskat)abstract
    • Vertically-aligned multiwall carbon nanotubes were deposited on silicon substrate by low pressure chemical vapor deposition (LPCVD), which can be utilized as heat spreaders in high power electronic packaging due to their remarkable thermal conductivity. The infrared emissivity of the vertically aligned multiwall carbon nanotubes was then characterized based on the FLIR SC600 infrared imaging system. The average infrared emissivity of the multiwall carbon nanotubes sample was about 0.92, which agrees well with experimental results reported before. Scanning electron microscopy (SEM) images of the multiwall carbon nanotubes were further analyzed to explain its high emissivity, and the reason can be attributed to the homogeneous sparseness and aligned structure of the vertically aligned multiwall carbon nanotubes
  •  
9.
  • Huang, Shirong, et al. (författare)
  • Reliability of Graphene-based Films Used for High Power Electronics Packaging
  • 2015
  • Ingår i: 16th International Conference on Electronic Packaging Technology, ICEPT 2015, Changsha, China, 11-14 August 2015. - 9781467379991 ; , s. 852-855
  • Konferensbidrag (refereegranskat)abstract
    • Graphene-base film was fabricated with chemical conversion process, including graphene oxide (GO) prepared by Hummer's method, graphene oxide reduced with L-ascorbic acid (LAA), graphene based film deposited by vacuum filtration process. Meanwhile, the functionalization of the graphene-based film was performed to decrease the thermal interface resistance between the graphene-based film and substrate. Characterization data showed that the graphene-based film possessed high reliability after 500 hours under 85°C aging test. In summary, the graphene-based film can be a promising solution in thermal management of high power electronics.
  •  
10.
  • Huang, Shirong, et al. (författare)
  • The Effects of Graphene-Based Films as Heat Spreaders for Thermal Management in Electronic Packaging
  • 2016
  • Ingår i: 2016 17th International Conference on Electronic Packaging Technology, ICEPT 2016. - 9781509013968 ; , s. Art no 7583272; Pages 889-892
  • Konferensbidrag (refereegranskat)abstract
    • Graphene-based films (GBF) were fabricated using a chemical conversion process including graphene oxide (GO) preparation by use of Hummer’s method, graphene oxide reduction using L-ascorbic acid (LAA), and finally film formation by vacuum filtration. GBF is considered as a candidate material for thermal management, i.e. for removing heat from hotspots in power electronic packaging, due to its high thermal conductivity. In this work, the GBF heat spreading performance in 3D TSV packaging was analysed using finite element methods (FEM) implemented in the COMSOL software. Both size effects and the influence of the thermal conductivity of the GBF heat spreader on the thermal performance of the 3D TSV package were evaluated. Furthermore, the size effects of the thermal conductive adhesive (TCA) underfill between the chip and the printed circuit board (PCB) were analysed. The results obtained are critical for proper design of graphene-based lateral heat spreaders in high power electronic packaging.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy