SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fu Yifeng 1984) srt2:(2010-2014);pers:(Wang Teng 1983)"

Search: WFRF:(Fu Yifeng 1984) > (2010-2014) > Wang Teng 1983

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Fu, Yifeng, 1984, et al. (author)
  • A complete carbon-nanotube-based on-chip cooling solution with very high heat dissipation capacity
  • 2012
  • In: Nanotechnology. - : IOP Publishing. - 1361-6528 .- 0957-4484. ; 23:4
  • Journal article (peer-reviewed)abstract
    • Heat dissipation is one of the factors limiting the continuous miniaturization of electronics. In the study presented in this paper, we designed an ultra-thin heat sink using carbon nanotubes (CNTs) as micro cooling fins attached directly onto a chip. A metal-enhanced CNT transfer technique was utilized to improve the interface between the CNTs and the chip surface by minimizing the thermal contact resistance and promoting the mechanical strength of the microfins. In order to optimize the geometrical design of the CNT microfin structure, multi-scale modeling was performed. A molecular dynamics simulation (MDS) was carried out to investigate the interaction between water and CNTs at the nanoscale and a finite element method (FEM) modeling was executed to analyze the fluid field and temperature distribution at the macroscale. Experimental results show that water is much more efficient than air as a cooling medium due to its three orders-of-magnitude higher heat capacity. For a hotspot with a high power density of 5000 W cm(-2), the CNT microfins can cool down its temperature by more than 40 degrees C. The large heat dissipation capacity could make this cooling solution meet the thermal management requirement of the hottest electronic systems up to date.
  •  
3.
  • Fu, Yifeng, 1984, et al. (author)
  • Application of through silicon via technology for in situ temperature monitoring on thermal interfaces
  • 2010
  • In: Journal of Micromechanics and Microengineering. - : IOP Publishing. - 1361-6439 .- 0960-1317. ; 20:2, s. id 025027 (5 pp)-
  • Journal article (peer-reviewed)abstract
    • In this paper, a series of micro-machining processes have been developed to fabricate a test platform with the ability of in situ temperature monitoring on thermal interface behaviour. Through silicon vias (TSVs) with an aspect ratio up to 13 using Cu as a conductor have been applied to connect an array of platinum-based temperature sensors directly deposited on the thermal interfaces to be measured. The sensors are subsequently calibrated by an industry standard resistance temperature detector. Results show that the temperature sensors function normally in a temperature range up to 250 degrees C. This demonstrates the successful deposition of temperature-sensing materials and their good connection to the TSVs. The realization of direct precise temperature measurement on the thermal interface of this test platform enables thermal characterization with a high accuracy.
  •  
4.
  • Fu, Yifeng, 1984, et al. (author)
  • Selective growth of double-walled carbon nanotubes on gold films
  • 2012
  • In: Materials Letters. - : Elsevier BV. - 1873-4979 .- 0167-577X. ; 72, s. 78-80
  • Journal article (peer-reviewed)abstract
    • Growth of high-quality vertical aligned carbon nanotube (CNT) structures on silicon supported gold (Au) films by thermal chemical vapor deposition (TCVD) is presented. Transmission electron microscopy (TEM) images show that the growth is highly selective. Statistical study reveals that 79.4% of the as-grown CNTs are double-walled. The CNTs synthesized on Au films are more porous than that synthesized on silicon substrates under the same conditions. Raman spectroscopy and electrical characterization performed on the as-grown double-walled CNTs (DWNTs) indicate that they are competitive with those CNTs grown on silicon substrates. Field emission tests show that closed-ended DWNTs have lower threshold field than those open-ended.
  •  
5.
  • Fu, Yifeng, 1984, et al. (author)
  • Ultrafast Transfer of Metal Enhanced Carbon Nanotubes at Low Temperature for Large Scale Electronics Assembly
  • 2010
  • In: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 22:44, s. 5039-5042
  • Journal article (peer-reviewed)abstract
    • An indium-assisted ultrafast carbon nanotube (CNT) transfer method with a yield rate over 90% is described. Metal-coated as-transferred CNT structures exhibit excellent electrical performance that is at least one order of magnitude better than the previously published results. Shear test results show that the adhesion between CNTs and the substrate is greatly improved and excellent flexibility is obtained after the transfer process.
  •  
6.
  • Liu, Johan, 1960, et al. (author)
  • Carbon Nanotubes for Electronics Manufacturing and Packaging: From Growth to Integration
  • 2013
  • In: Advances in Manufacturing. - : Springer Science and Business Media LLC. - 2095-3127 .- 2195-3597. ; 1:1, s. 13-27
  • Research review (peer-reviewed)abstract
    • Carbon nanotubes (CNTs) possess excellent electrical, thermal and mechanical properties. They are light in weight yet stronger than most of the other materials. They can be made both highly conductive and semi-conductive. They can be made from nano-sized small catalyst particles and extend to tens of millimeters long. Since CNTs emerged as a hot topic in the early 1990s, numerous research efforts have been spent on the study of the various properties of this new material. CNTs have been proposed as alternative materials of potential excellence in a lot of applications such as electronics, chemical sensors, mechanical sensors/actuators and composite materials, etc. This paper reviews the use of CNTs particularly in electronics manufacturing and packaging field. The progresses of three most important applications, including CNT-based thermal interface materials, CNT-based interconnections and CNT-based cooling devices are reviewed. The growth and post-growth processing of CNTs for specific applications are introduced and the tailoring of CNTs properties, i.e., electrical resistivity, thermal conductivity and strength, etc., is discussed with regard to specific application requirement. As the semiconductor industry is still driven by the need of getting smaller and faster, CNTs and the related composite systems as emerging new materials are likely to provide the solution to the future challenges as we make more and more complex electronics devices and systems.
  •  
7.
  • Liu, Johan, 1960, et al. (author)
  • Use of carbon nanotubes in potential electronics packaging applications
  • 2010
  • In: 2010 10th IEEE Conference on Nanotechnology, NANO 2010. - 9781424470334 ; , s. 160-166
  • Conference paper (other academic/artistic)abstract
    • Packaging of electronics is an important technology to interconnect, power, cool and protect the components in highly integrated systems. Continuous size shrinking and function integration of future electronics are expected to be driven mainly by the advances in packaging technology. Carbon nanotubes (CNTs) are proposed for many novel packaging solutions thanks to their unique electrical, thermal, and mechanical properties. This paper introduces potential use of CNTs in electronics packaging, in both interconnection and thermal management applications. The challenges of fully exploiting the great potential of CNTs in this field are also discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view