SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fu Yifeng 1984) srt2:(2015-2019);pers:(Sun Shuangxi 1986)"

Sökning: WFRF:(Fu Yifeng 1984) > (2015-2019) > Sun Shuangxi 1986

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bao, Jie, et al. (författare)
  • Application of two-dimensional layered hexagonal boron nitride in chip cooling
  • 2016
  • Ingår i: Yingyong Jichu yu Gongcheng Kexue Xuebao/Journal of Basic Science and Engineering. - 1005-0930. ; 24:1, s. 210-217
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2016, The Editorial Board of Journal of Basic Science and Engineering. All right reserved.Research into layered hexagonal boron nitride(h-BN)has recently intensified, due to its superior physicochemical properties compared to that of a typical two-dimensional material. H-BN can be utilized in power chips as both an insulating layer as well as a heat spreader for local hotspots with high heat flux. Single layer h-BN film grown by CVD and h-BN microparticles are respectively transferred onto the surfaces of the thermal evaluation chips, where the influence of h-BN on the heat dissipation performance of the chips can be observed at different power values. The resistance-temperature curve method and infrared thermal imager are both used to measure the temperature of hotspots on the thermal evaluation chips, which can be reduced by between 3~5℃ at 1W after the transfer of h-BN. The cooling efficiency is improved and it can be found that single layer h-BN film shows better heat dissipation ability.
  •  
2.
  • Daon, J., et al. (författare)
  • Chemically enhanced carbon nanotubes based Thermal Interface Materials
  • 2015
  • Ingår i: THERMINIC 2015 - 21st International Workshop on Thermal Investigations of ICs and Systems 2015. - 9781467397056
  • Konferensbidrag (refereegranskat)abstract
    • With progress in microelectronics the component density on a device increases drastically. As a consequence the power density reaches levels that challenge device reliability. New heat dissipation strategies are needed to efficiently drain heat. Thermal Interface Materials (TIMs) are usually used to transfer heat across interfaces, for example between a device and its packaging. Vertically Aligned Carbon Nanotubes (VACNTs) can be used to play this role. Indeed, carbon nanotubes are among the best thermal conductors (similar to 3.000 W/mK) and in the form of VACNT mats, show interesting mechanical properties. On one side, VACNTs are in contact with their growth substrate and there is a low thermal resistance. On the other side, good contact must be created between the opposite substrate and the VACNTs in order to decrease the contact thermal resistance. A thin-film deposition of an amorphous material can be used to play this role. This paper reports a chemically enhanced carbon nanotube based TIM with creation of chemical bonds between the polymer and VACNTs. We show that these covalent bonds enhance the thermal transfer from VACNTs to a copper substrate and can dramatically decrease local resistances. Implementation processes and thermal characterizations of TIMs are studied and reported.
  •  
3.
  • Fu, Yifeng, 1984, et al. (författare)
  • Carbon nanotube growth on different underlayers for thermal interface material application
  • 2016
  • Ingår i: IMAPS Nordic Annual Conference 2016 Proceedings. - 9781510827226
  • Konferensbidrag (refereegranskat)abstract
    • Thermal interface material (TIM) is a critical component in thermal management of high density packaging systems since both the reliability and lifetime of microsystems are dependent on how the heat is dissipated. Carbon nanotubes (CNTs) are promising candidate for development of TIMs due to their excellent thermal and mechanical properties. The thermal conductivity of CNTs can be up to 3000 W/mK in the longitudinal direction which acts as ideal heat transfer path. However, the huge interfacial thermal resistance between CNTs and contact surface hinders the exploitation of CNTs as TIMs. In this paper, we will focus on the growth of CNTs on various substrates and underlayers and analyze the interaction between catalyst and underlayer materials. Microscopic analysis is performed to characterize the quality of the CNT materials and monitor the diffusion of Fe particles into different barrier layers. Thermal conductivity of the CNT TIMs will be measured to examine the performance of the materials.
  •  
4.
  • Fu, Yifeng, 1984, et al. (författare)
  • Post-Growth Processing of Carbon Nanotubes for Interconnect Applications - A Review
  • 2016
  • Ingår i: 2016 6th Electronic System-Integration Technology Conference (Estc). - 9781509014026 ; , s. Article no 7764713-
  • Konferensbidrag (refereegranskat)abstract
    • Interconnect is one of the most important functions of packaging technology. It delivers power and signals into and out of electronic systems. The performance and reliability of microsystems are dependent on the interconnect quality. This paper reviews the chip-level interconnects based on carbon nanotubes (CNTs), this includes their applications for both on-chip and off-chip interconnects. Various post-growth processing of CNTs, such as doping, densification, transfer, metallization, etc., for the improvement of their performance will be reviewed.
  •  
5.
  • Jeppson, Kjell, 1947, et al. (författare)
  • Hotspot test structures for evaluating carbon nanotube microfin coolers and graphene-like heat spreaders
  • 2016
  • Ingår i: 29th IEEE International Conference on Microelectronic Test Structures (ICMTS), Yokohama, Japan, Mar 28-31, 2016. - 1071-9032. ; 2016-May, s. 32-36
  • Konferensbidrag (refereegranskat)abstract
    • The design, fabrication, and use of a hotspot-producing and temperature-sensing test structure for evaluating the thermal properties of carbon nanotubes, graphene and boron nitride for cooling of electronic devices in applications like 3D integrated chip-stacks, power amplifiers and light-emitting diodes is described. The test structure is a simple meander-shaped metal resistor serving both as the hotspot and the temperature thermo-meter. By use of this test structure, the influence of emerging materials like those mentioned above on the temperature of the hotspot has been evaluated with good accuracy).
  •  
6.
  • Jiang, Di, 1983, et al. (författare)
  • A flexible and stackable 3D interconnect system using growth-engineered carbon nanotube scaffolds
  • 2017
  • Ingår i: Flexible and Printed Electronics. - : IOP Publishing. - 2058-8585. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the critical challenges for realizing flexible electronic systems for a wide range of applications is the development of materials for flexible and stackable interconnects. We propose and demonstrate a three-dimensional (3D)interconnect structure embedded in a polymeric substrate using metal-coated carbon nanotube (CNT)scaffolds. By using two different underlayer materials for the catalyst, onestep synthesis of a dual-height CNT interconnect scaffold was realized. The CNT scaffolds serve as flexible cores for both annular metal through-substrate-vias and for horizontal metal interconnect. The 3D-CNT network was fabricated on a silicon substrate, and once the scaffolds were covered by metal, they were embedded in a polymer serving as a flexible substrate after peel-off from the silicon substrate. The 3D-CNT interconnect network was exposed to mechanical bending and stretching tests while monitoring its electrical properties. Even after 300 cycles no significant increase of resistances was found. Electrically there is a trade-off between flexibility and conductivity due to the surface roughness of the scaffold. However, this is to some extent alleviated by the metalized sidewalls giving the horizontal wires a cross-sectional area larger than indicated by their footprint. For gold wires 200 nm thick, measurements indicated a resistivity of 18 μΩ.cm, a value less than one order of magnitude larger than that of bulk gold, and a value that is expected to improve as technology improves. The mechanical properties of the metalized scaffolds were simulated using a finite element model. The potential scale-up capability of the proposed 3D-CNT network was demonstrated by the stacking of two such polymer-embedded interconnect systems.
  •  
7.
  • Kabiri Samani, Majid, 1976, et al. (författare)
  • Improving Thermal Transport at Carbon Hybrid Interfaces by Covalent Bonds
  • 2018
  • Ingår i: Advanced Materials Interfaces. - : Wiley. - 2196-7350. ; 5:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene and carbon nanotubes have received much attention for thermal management application due to their unique thermal performance. Theoretical work suggests that a covalent bond can combine 1D carbon nanotubes with 2D graphene together to extend the excellent thermal property to three dimensions for heat dissipation. This paper experimentally demonstrates the high heat dissipation capability of a freestanding 3D multiwall carbon nanotube (MWCNT) and graphene hybrid material. Using high-resolution transmission electron microscopy and pulsed photothermal reflection measurement method, the covalent bonds between MWCNT and planar graphene are microscopically and numerically demonstrated. Thermal resistance at the junction with covalent bonds is 9×10^−10 Kelvin square meter per watt, which is three orders of magnitude lower than van der Waals contact. Joule heating method is used to verify the extra cooling effect of this 3D hybrid material compared to graphite film. A demonstrator using high power chip is developed to demonstrate the applicability of this hybrid material in thermal application. Temperature at hot spots can be decreased by around 10°C with the assistance of this hybrid material. These findings are very significant for understanding the thermal conduction during combining 1D and 2D carbon material together for future thermal management application.
  •  
8.
  • Kabiri Samani, Majid, 1976, et al. (författare)
  • Thermal conductivity measurement of densified carbon nanotube bundles by pulsed photothermal reflectance technique
  • 2016
  • Ingår i: IMAPS Nordic Annual Conference 2016 Proceedings. - 9781510827226
  • Konferensbidrag (refereegranskat)abstract
    • Carbon nanotubes (CNTs) were proposed as a promising interconnection material in future miniaturized electronics, owing to their exceptional electrical and thermal properties. A series of CNT bundles with 1 mm diameter were grown on silicon substrate by thermal Chemical Vapor Deposition (CVD) at temperature 700 oC. The as grown CNT bundles were densified by a vapor densification method. SEM analysis shows that the vapor densification is densified the CNT forests, which reduces the air volume fraction to increase thermal conductivity of the CNT bundles. The pulsed photothermal reflectance technique is applied to measure thermal conductivity of the CNT bundle before and after densification and the results show the thermal conductivity of densified CNT bundles increases and capability of making CNT filled through silicon via with better thermal and electrical performance.
  •  
9.
  • Mu, Wei, 1985, et al. (författare)
  • Controllable and fast synthesis of bilayer graphene by chemical vapor deposition on copper foil using a cold wall reactor
  • 2016
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 304:15 November 2016, s. 106-114
  • Tidskriftsartikel (refereegranskat)abstract
    • Bilayer graphene is attractive for digital device applications due to the appearance of a bandgap under application of an electrical displacement field. Controllable and fast synthesis of bilayer graphene on copper by chemical vapor deposition is considered a crucial process from the perspective of industrial applications. Here, a systematic investigation of the influence of process parameters on the growth of bilayer graphene by chemical vapor deposition in a low pressure cold wall reactor is presented. In this study, the initial process stages have been of particular interest. We have found that the influence of the hydrogen partial pressure on synthesis is completely the opposite from that found for traditional tubular quartz CVD in terms of its influence on the graphene growth rate. H2/CH4 ratio was also found to effectively influence the properties of the synthesized bilayer graphene in terms of its atomic structure, whether it be AB-stacked or misoriented. Different pre-treatments of the copper foil, in combination with different annealing processes, were used to investigate the nucleation process with the aim of improving the controllability of the synthesis process. Based on an analysis of the nucleation activity, adsorption-diffusion and gas-phase penetration were employed to illustrate the synthesis mechanism of bilayer graphene on copper foil. After optimization of the synthesis process, large areas, up to 90% of a copper foil, were covered by bilayer graphene within 15 minutes. The total process time is only 45 minutes, including temperature ramp-up and cool-down by using a low pressure cold wall CVD reactor.
  •  
10.
  • Mu, Wei, 1985, et al. (författare)
  • Double-Densified VerticallyAligned Carbon Nanotube Bundles for Application in 3D Integration High Aspect Ratio TSV Interconnects
  • 2016
  • Ingår i: Proceedings - Electronic Components and Technology Conference. - 0569-5503. - 9781509012046 ; 2016-August, s. 211-216
  • Konferensbidrag (refereegranskat)abstract
    • The treatment of densification by vapor on pristineMWCNT bundles are necessary to improve the effective area of the CNT TSV. However, the CNT bundles might tilt partly because of the non-uniform densification at root of the bundle, especially when it comes to the high aspect ratio CNT bundles. In order to solve these problems, a double densification process has been proposed and developed here. First of all, the shape of partial densified CNT bundles were optimized as a function of time. After several steps such as transferring of partial densified CNT bundles into the via, second densification, epoxy filling and chemical mechanical polishing, the CNT filled TSV with aspect ratio of 10 was achieved. The current voltage response of the CNT TSV interconnection indicated good electrical connection was formed. The resistivity of CNT bundles in via was calculated to be around 2-3 milli-ohmcm.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy