SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fuchs C) ;mspu:(researchreview)"

Search: WFRF:(Fuchs C) > Research review

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Research review (peer-reviewed)
  •  
2.
  •  
3.
  • Joffrin, E., et al. (author)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Research review (peer-reviewed)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
4.
  • Aamodt, K., et al. (author)
  • The ALICE experiment at the CERN LHC
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Research review (peer-reviewed)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
5.
  • Abelev, B., et al. (author)
  • Performance of the ALICE experiment at the CERN LHC
  • 2014
  • In: International Journal of Modern Physics A. - 0217-751X. ; 29:24
  • Research review (peer-reviewed)abstract
    • ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.
  •  
6.
  • Meyer, H.F., et al. (author)
  • Overview of physics studies on ASDEX Upgrade
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Research review (peer-reviewed)abstract
    • The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
  •  
7.
  • Genkinger, J. M., et al. (author)
  • Central adiposity, obesity during early adulthood, and pancreatic cancer mortality in a pooled analysis of cohort studies
  • 2015
  • In: Annals of Oncology. - : OXFORD UNIV PRESS. - 0923-7534 .- 1569-8041. ; 26:11, s. 2257-2266
  • Research review (peer-reviewed)abstract
    • positively associated with pancreatic cancer. However, little evidence exists regarding the influence of central adiposity, a high BMI during early adulthood, and weight gain after early adulthood on pancreatic cancer risk. Design: We conducted a pooled analysis of individual-level data from 20 prospective cohort studies in the National Cancer Institute BMI and Mortality Cohort Consortium to examine the association of pancreatic cancer mortality with measures of central adiposity ( e. g. waist circumference; n = 647 478; 1947 pancreatic cancer deaths), BMI during early adulthood ( ages 18- 21 years) and BMI change between early adulthood and cohort enrollment, mostly in middle age or later ( n = 1 096 492; 3223 pancreatic cancer deaths). Multivariable hazard ratios ( HRs) and 95% confidence intervals ( CIs) were calculated using Cox proportional hazards regression models. Results: Higher waist-to-hip ratio ( HR = 1.09, 95% CI 1.02- 1.17 per 0.1 increment) and waist circumference ( HR = 1.07, 95% CI 1.00- 1.14 per 10 cm) were associated with increased risk of pancreatic cancer mortality, even when adjusted for BMI at baseline. BMI during early adulthood was associated with increased pancreatic cancer mortality ( HR = 1.18, 95% CI 1.11- 1.25 per 5 kg/ m2), with increased risk observed in both overweight and obese individuals ( compared with BMI of 21.0 to < 23 kg/ m(2), HR = 1.36, 95% CI 1.20- 1.55 for BMI 25.0 < 27.5 kg/ m2, HR = 1.48, 95% CI 1.20- 1.84 for BMI 27.5 to < 30 kg/ m2, HR = 1.43, 95% CI 1.11- 1.85 for BMI = 30 kg/ m2). BMI gain after early adulthood, adjusted for early adult BMI, was less strongly associated with pancreatic cancer mortality ( HR = 1.05, 95% CI 1.01- 1.10 per 5 kg/ m2). Conclusions: Our results support an association between pancreatic cancer mortality and central obesity, independent of BMI, and also suggest that being overweight or obese during early adulthood may be important in influencing pancreatic cancer mortality risk later in life.
  •  
8.
  • Genkinger, J. M., et al. (author)
  • Dairy products and pancreatic cancer risk : a pooled analysis of 14 cohort studies
  • 2014
  • In: Annals of Oncology. - : OXFORD UNIV PRESS. - 0923-7534 .- 1569-8041. ; 25:6, s. 1106-1115
  • Research review (peer-reviewed)abstract
    • .Pancreatic cancer has few early symptoms, is usually diagnosed at late stages, and has a high case-fatality rate. Identifying modifiable risk factors is crucial to reducing pancreatic cancer morbidity and mortality. Prior studies have suggested that specific foods and nutrients, such as dairy products and constituents, may play a role in pancreatic carcinogenesis. In this pooled analysis of the primary data from 14 prospective cohort studies, 2212 incident pancreatic cancer cases were identified during follow-up among 862 680 individuals. Adjusting for smoking habits, personal history of diabetes, alcohol intake, body mass index (BMI), and energy intake, multivariable study-specific hazard ratios (MVHR) and 95% confidence intervals (CIs) were calculated using the Cox proportional hazards models and then pooled using a random effects model. There was no association between total milk intake and pancreatic cancer risk (MVHR = 0.98, 95% CI = 0.82-1.18 comparing a parts per thousand yen500 with 1-69.9 g/day). Similarly, intakes of low-fat milk, whole milk, cheese, cottage cheese, yogurt, and ice-cream were not associated with pancreatic cancer risk. No statistically significant association was observed between dietary (MVHR = 0.96, 95% CI = 0.77-1.19) and total calcium (MVHR = 0.89, 95% CI = 0.71-1.12) intake and pancreatic cancer risk overall when comparing intakes a parts per thousand yen1300 with < 500 mg/day. In addition, null associations were observed for dietary and total vitamin D intake and pancreatic cancer risk. Findings were consistent within sex, smoking status, and BMI strata or when the case definition was limited to pancreatic adenocarcinoma. Overall, these findings do not support the hypothesis that consumption of dairy foods, calcium, or vitamin D during adulthood is associated with pancreatic cancer risk.
  •  
9.
  • Zoback, Mary Lou, et al. (author)
  • Global patterns of tectonic stress
  • 1989
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 341:6240, s. 291-298
  • Research review (peer-reviewed)abstract
    • Regional patterns of present-day tectonic stress can be used to evaluate the forces acting on the lithosphere and to investigate intraplate seismicity. Most intraplate regions are characterized by a compressional stress regime; extension is limited almost entirely to thermally uplifted regions. In several plates the maximum horizontal stress is subparallel to the direction of absolute plate motion, suggesting that the forces driving the plates also dominate the stress distribution in the plate interior.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view