1. |
- Arshad, Usman, et al.
(författare)
-
Prediction of exposure-driven myelotoxicity of continuous infusion 5-fluorouracil by a semi-physiological pharmacokinetic-pharmacodynamic model in gastrointestinal cancer patients
- 2020
-
Ingår i: Cancer Chemotherapy and Pharmacology. - : Springer Science and Business Media LLC. - 0344-5704 .- 1432-0843. ; 85:4, s. 711-722
-
Tidskriftsartikel (refereegranskat)abstract
- PurposeTo describe 5-fluorouracil (5FU) pharmacokinetics, myelotoxicity and respective covariates using a simultaneous nonlinear mixed effect modelling approach.MethodsThirty patients with gastrointestinal cancer received 5FU 650 or 1000 mg/m2/day as 5-day continuous venous infusion (14 of whom also received cisplatin 20 mg/m2/day). 5FU and 5-fluoro-5,6-dihydrouracil (5FUH2) plasma concentrations were described by a pharmacokinetic model using NONMEM. Absolute leukocyte counts were described by a semi-mechanistic myelosuppression model. Covariate relationships were evaluated to explain the possible sources of variability in 5FU pharmacokinetics and pharmacodynamics.ResultsTotal clearance of 5FU correlated with body surface area (BSA). Population estimate for total clearance was 249 L/h. Clearances of 5FU and 5FUH2 fractionally changed by 77%/m2 difference from the median BSA. 5FU central and peripheral volumes of distribution were 5.56 L and 28.5 L, respectively. Estimated 5FUH2 clearance and volume of distribution were 121 L/h and 96.7 L, respectively. Baseline leukocyte count of 6.86 × 109/L, as well as mean leukocyte transit time of 281 h accounting for time delay between proliferating and circulating cells, was estimated. The relationship between 5FU plasma concentrations and absolute leukocyte count was found to be linear. A higher degree of myelosuppression was attributed to combination therapy (slope = 2.82 L/mg) with cisplatin as compared to 5FU monotherapy (slope = 1.17 L/mg).ConclusionsBSA should be taken into account for predicting 5FU exposure. Myelosuppression was influenced by 5FU exposure and concomitant administration of cisplatin.
|
|
2. |
- Buesker, Soeren, et al.
(författare)
-
Population Pharmacokinetics as a Tool to Reevaluate the Complex Disposition of Ethanol in the Fed and Fasted States
- 2023
-
Ingår i: Journal of clinical pharmacology. - : WILEY. - 0091-2700 .- 1552-4604. ; 63, s. 681-694
-
Tidskriftsartikel (refereegranskat)abstract
- The pharmacokinetics (PK) of ethanol are important in pharmacology and therapeutics because of potential drug-alcohol interactions as well as in forensic science when alcohol-related crimes are investigated. The PK of ethanol have been extensively studied since the 1930s, although some issues remain unresolved, such as the significance of first-pass metabolism, whether zero-order kinetics apply, and the effects of food on bioavailability. We took advantage of nonlinear mixed-effects modeling to describe blood-alcohol concentration (BAC) profiles derived from 3 published clinical studies involving oral, intraduodenal, and intravenous administration of ethanol with and without food. The overall data set included 1510 BACs derived from 72 healthy subjects (60 men, 12 women) aged between 20 and 60 years. Two-compartment models with first-order absorption and Michaelis-Menten elimination kinetics adequately described the BAC profiles. Food intake had 2 separate effects: It reduced the absorption rate constant and accelerated the maximum elimination rate. Estimates of the maximum elimination rate (fasted) and the food effect (as a factor) were 6.31 g/h (95%CI, 6.04-6.59 g/h) and 1.39-fold (95%CI, 1.33-1.46-fold), respectively. Simulations showed that the area under the BAC-time curve (AUC) was smaller with lower input rate of ethanol, irrespective of any first-pass metabolism. The AUC from time 0 to 10 hours for a 75-kg subject was 2.34 g center dot h/L (fed) and 3.83 g center dot h/L (fasted) after an oral dose of 45 g ethanol. This difference was mainly attributable to the food effect on ethanol elimination and depended less on the absorption rate. Our new approach to explain the complex human PK of ethanol may help when BAC predictions are made in clinical pharmacology and forensic medicine.
|
|
3. |
|
|
4. |
|
|
5. |
- Stemkens, Ralf, et al.
(författare)
-
Drug interaction potential of high-dose rifampicin in patients with pulmonary tuberculosis
- 2023
-
Ingår i: Antimicrobial Agents and Chemotherapy. - : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 67:10
-
Tidskriftsartikel (refereegranskat)abstract
- Accumulating evidence supports the use of higher doses of rifampicin for tuberculosis (TB) treatment. Rifampicin is a potent inducer of metabolic enzymes and drug transporters, resulting in clinically relevant drug interactions. To assess the drug interaction potential of higher doses of rifampicin, we compared the effect of high-dose rifampicin (40 mg/kg daily, RIF40) and standard-dose rifampicin (10 mg/kg daily, RIF10) on the activities of major cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp). In this open-label, single-arm, two-period, fixed-order phenotyping cocktail study, adult participants with pulmonary TB received RIF10 (days 1–15), followed by RIF40 (days 16–30). A single dose of selective substrates (probe drugs) was administered orally on days 15 and 30: caffeine (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and digoxin (P-gp). Intensive pharmacokinetic blood sampling was performed over 24 hours after probe drug intake. In all, 25 participants completed the study. Geometric mean ratios (90% confidence interval) of the total exposure (area under the concentration versus time curve, RIF40 versus RIF10) for each of the probe drugs were as follows: caffeine, 105% (96%–115%); tolbutamide, 80% (74%–86%); omeprazole, 55% (47%–65%); dextromethorphan, 77% (68%–86%); midazolam, 62% (49%–78%), and 117% (105%–130%) for digoxin. In summary, high-dose rifampicin resulted in no additional effect on CYP1A2, mild additional induction of CYP2C9, CYP2C19, CYP2D6, and CYP3A, and marginal inhibition of P-gp. Existing recommendations on managing drug interactions with rifampicin can remain unchanged for the majority of co-administered drugs when using high-dose rifampicin. Clinical Trials registration number NCT04525235.
|
|