SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gårdmark T) ;lar1:(slu)"

Sökning: WFRF:(Gårdmark T) > Sveriges Lantbruksuniversitet

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gårdmark, Anna, et al. (författare)
  • Biological ensemble modeling to evaluate potential futures of living marine resources
  • 2013
  • Ingår i: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582. ; 23:4, s. 742-754
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural resource management requires approaches to understand and handle sources of uncertainty in future responses of complex systems to human activities. Here we present one such approach, the biological ensemble modeling approach,'' using the Eastern Baltic cod (Gadus morhua callarias) as an example. The core of the approach is to expose an ensemble of models with different ecological assumptions to climate forcing, using multiple realizations of each climate scenario. We simulated the long-term response of cod to future fishing and climate change in seven ecological models ranging from single-species to food web models. These models were analyzed using the biological ensemble modeling approach'' by which we (1) identified a key ecological mechanism explaining the differences in simulated cod responses between models, (2) disentangled the uncertainty caused by differences in ecological model assumptions from the statistical uncertainty of future climate, and (3) identified results common for the whole model ensemble. Species interactions greatly influenced the simulated response of cod to fishing and climate, as well as the degree to which the statistical uncertainty of climate trajectories carried through to uncertainty of cod responses. Models ignoring the feedback from prey on cod showed large interannual fluctuations in cod dynamics and were more sensitive to the underlying uncertainty of climate forcing than models accounting for such stabilizing predator-prey feedbacks. Yet in all models, intense fishing prevented recovery, and climate change further decreased the cod population. Our study demonstrates how the biological ensemble modeling approach makes it possible to evaluate the relative importance of different sources of uncertainty in future species responses, as well as to seek scientific conclusions and sustainable management solutions robust to uncertainty of food web processes in the face of climate change.
  •  
2.
  • Olsson, Jens, et al. (författare)
  • Temporal development of coastal ecosystems in the Baltic Sea over the past two decades
  • 2015
  • Ingår i: ICES Journal of Marine Science. - : Oxford University Press (OUP). - 1054-3139 .- 1095-9289. ; 72:9, s. 2539-2548
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal areas are among the most biologically productive aquatic systems worldwide, but face strong and variable anthropogenic pressures. Few studies have, however, addressed the temporal development of coastal ecosystems in an integrated context. This study represents an assessment of the development over time in 13 coastal ecosystems in the Baltic Sea region during the past two decades. The study covers between two to six trophic levels per system and time-series dating back to the early 1990s. We applied multivariate analyses to assess the temporal development of biological ecosystem components and relate these to potential driving variables associated with changes in climate, hydrology, nutrient status, and fishing pressure. Our results show that structural change often occurred with similar timing in the assessed coastal systems. Moreover, in 10 of the 13 systems, a directional development of the ecosystem components was observed. The variables representing key ecosystem components generally differed across systems, due to natural differences and limitation to available data. As a result of this, the correlation between the temporal development of the biological components in each area and the driving variables assessed was to some extent area-specific. However, change in nutrient status was a common denominator of the variables most often associated with changes in the assessed systems. Our results, additionally, indicate existing strengths as well as future challenges in the capacity of currently available monitoring data to support integrated assessments and the implementation of an integrated ecosystem-based approach to the management of the Baltic Sea coastal ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy