SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gårdmark T.) ;pers:(Neuenfeldt Stefan)"

Sökning: WFRF:(Gårdmark T.) > Neuenfeldt Stefan

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergström, Lena, et al. (författare)
  • Report of the ICES/HELCOM Working Group on Integrated Assessments of the Baltic Sea (WGIAB)
  • 2015
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The ICES/HELCOM Working Group on Integrated Assessments of the Baltic Sea(WGIAB) was established in 2007 as a forum for developing and combining ecosystembasedmanagement efforts for the Baltic Sea. The group intends to serve as a scientificcounterpart and support for the ICES Baltic Fisheries Assessment Working Group(WGBFAS) as well as for efforts and projects related to Integrated Ecosystem Assessments(IEA) within ICES and HELCOM. The group works in cooperation with similargroups within the ACOM/SCICOM Steering Group on Integrated Ecosystem Assessments(SSGIEA).The 2015 WGIAB meeting was held in Cádiz, Spain, from 9–13 March, back-to-backwith the meeting of its counterpart in the Working Group on Ecosystem Assessmentof Western European Shelf Seas (WGEAWESS). The meetings had joint sessions as wellas WG specific work, and some participants effectively participated in both meetings.The WGIAB meeting was attended by 27 participants from nine countries. The meetingwas chaired by Christian Möllmann, Germany, Laura Uusitalo, Finland and Lena Bergström,Sweden.This was the last year of the ongoing three-year Terms of Reference (ToR) for WGIAB.The main working activities in 2015 were to i) conduct studies on Baltic Sea ecosystemfunctioning with the goal to publish case studies from different parts of the Baltic Seain peer-reviewed journals, ii) work on the demonstration exercise to develop ecosystem-based assessment and advice for Baltic fish stocks focusing on cod (DEMO) withmultiple approaches, iii) plan further how to integrate the social and economic aspectsmore tightly in the WGIAB work, and iv) discuss the future focus and format of theWGIAB work.The Baltic ecosystem functioning activity focused on identifying and exploring keytrends and linkages in the Baltic Sea foodweb. This was pursued by presentation andfurther discussion of ongoing intersessional work on foodweb modelling and integratedanalyses, and by exercises to develop conceptual models Baltic Sea foodwebsand the links to ecosystem function. Long-term monitoring datasets on the abiotic andbiotic parts of the Baltic Sea Proper ecosystem were updated for use in the continuedwork to develop environmental indicators for fisheries and marine management.The focus of the DEMO 3 (DEMOnstration exercise for Integrated Ecosystem Assessmentand Advice of Baltic Sea cod) was on finding a way to use the results from theDEMO1 and DEMO2 workshops in short and midterm projections/scenarios of Balticcod dynamics based on different types of modelling, as well as designing methodologyand modelling data for practical implementation of Integrated Advice for Baltic cod.The WGIAB was positively inclined towards including social and economic aspectsinto the integrated assessment. Openings to this path were provided by presentationon ongoing project work, and discussing their linkages to ecological aspects. It wasseen as crucial that experts on social and economic analysis should be included andtake an active part in the future work of the group.The group concluded that its upcoming work should focus more closely on functionaldiversity, which was identified as a recurring issue in the Baltic Sea. This approach wasalso identified as a useful connection point between scientific and management aspectsin order for the group to continue serving as a forum for developing ecosystem-basedmanagement efforts in the Baltic Sea. A focus on functional diversity was also seen as2 | ICES WGIAB REPORT 2015a potentially feasible way of bringing together management aspects for different sectors,by linking to ecosystem services concepts.The group proposed Saskia Otto, Germany and Martin Lindegren, Denmark as newincoming Chairs, together with Lena Bergström, Sweden and Laura Uusitalo, Finland.Having four Chairs is justified due to the wide scope of the group's work, as well asthe increased work load due to the planned new foci.
  •  
2.
  • Gårdmark, Anna, et al. (författare)
  • Biological ensemble modeling to evaluate potential futures of living marine resources
  • 2013
  • Ingår i: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582. ; 23:4, s. 742-754
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural resource management requires approaches to understand and handle sources of uncertainty in future responses of complex systems to human activities. Here we present one such approach, the biological ensemble modeling approach,'' using the Eastern Baltic cod (Gadus morhua callarias) as an example. The core of the approach is to expose an ensemble of models with different ecological assumptions to climate forcing, using multiple realizations of each climate scenario. We simulated the long-term response of cod to future fishing and climate change in seven ecological models ranging from single-species to food web models. These models were analyzed using the biological ensemble modeling approach'' by which we (1) identified a key ecological mechanism explaining the differences in simulated cod responses between models, (2) disentangled the uncertainty caused by differences in ecological model assumptions from the statistical uncertainty of future climate, and (3) identified results common for the whole model ensemble. Species interactions greatly influenced the simulated response of cod to fishing and climate, as well as the degree to which the statistical uncertainty of climate trajectories carried through to uncertainty of cod responses. Models ignoring the feedback from prey on cod showed large interannual fluctuations in cod dynamics and were more sensitive to the underlying uncertainty of climate forcing than models accounting for such stabilizing predator-prey feedbacks. Yet in all models, intense fishing prevented recovery, and climate change further decreased the cod population. Our study demonstrates how the biological ensemble modeling approach makes it possible to evaluate the relative importance of different sources of uncertainty in future species responses, as well as to seek scientific conclusions and sustainable management solutions robust to uncertainty of food web processes in the face of climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy