SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gao Pei) srt2:(2015-2019);pers:(Yang Yang)"

Search: WFRF:(Gao Pei) > (2015-2019) > Yang Yang

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Yuan, Jun, et al. (author)
  • Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics
  • 2019
  • In: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Journal article (peer-reviewed)abstract
    • Despite significant development recently, improving the power conversion efficiency of organic photovoltaics (OPVs) is still an ongoing challenge to overcome. One of the prerequisites to achieving this goal is to enable efficient charge separation and small voltage losses at the same time. In this work, a facile synthetic strategy is reported, where optoelectronic properties are delicately tuned by the introduction of electron-deficient-core-based fused structure into non-fullerene acceptors. Both devices exhibited a low voltage loss of 0.57 V and high short-circuit current density of 22.0 mA cm(-2), resulting in high power conversion efficiencies of over 13.4%. These unconventional electron-deficient-core-based non-fullerene acceptors with near-infrared absorption lead to low non-radiative recombination losses in the resulting organic photovoltaics, contributing to a certified high power conversion efficiency of 12.6%.
  •  
7.
  • Cheng, Hao-Wen, et al. (author)
  • Realizing Efficient Charge/Energy Transfer and Charge Extraction in Fullerene-Free Organic Photovoltaics via a Versatile Third Component
  • 2019
  • In: Nano letters (Print). - : AMER CHEMICAL SOC. - 1530-6984 .- 1530-6992. ; 19:8, s. 5053-5061
  • Journal article (peer-reviewed)abstract
    • Solution-processed organic photovoltaics (OPVs) based on bulk-heterojunctions have gained significant attention to alleviate the increasing demend of fossil fuel in the past two decades. OPVs combined of a wide bandgap polymer donor and a narrow bandgap nonfullerene acceptor show potential to achieve high performance. However, there are still two reasons to limit the OPVs performance. One, although this combination can expand from the ultraviolet to the near-infrared region, the overall external quantum efficiency of the device suffers low values. The other one is the low open-circuit voltage (V-OC) of devices resulting from the relatively downshifted lowest unoccupied molecular orbital (LUMO) of the narrow bandgap. Herein, the approach to select and incorporate a versatile third component into the active layer is reported. A third component with a bandgap larger than that of the acceptor, and absorption spectra and LUMO levels lying within that of the donor and acceptor, is demonstrated to be effective to conquer these issues. As a result, the power conversion efficiencies (PCEs) are enhanced by the elevated short-circuit current and V-OC; the champion PCEs are 11.1% and 13.1% for PTB7-Th:IEICO-4F based and PBDB-T:Y1 based solar cells, respectively.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view