SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Garousi Javad) "

Sökning: WFRF:(Garousi Javad)

  • Resultat 1-10 av 49
  • [1]2345Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Altai, Mohamed, et al. (författare)
  • On the prevention of kidney uptake of radiolabeled DARPins
  • 2020
  • Ingår i: EJNMMI Research. - : SPRINGEROPEN. - 2191-219X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Designed ankyrin repeat proteins (DARPins) are small engineered scaffold proteins (14-18 kDa) that demonstrated promising tumor-targeting properties in preclinical studies. However, high renal accumulation of activity for DARPins labeled with residualizing labels is a limitation for targeted radionuclide therapy. A better understanding of the mechanisms behind the kidney uptake of DARPins could aid the development of strategies to reduce it. In this study, we have investigated whether the renal uptake of [Tc-99m]Tc(CO)(3)-G3 DARPin could be reduced by administration of compounds that act on various parts of the reabsorption system in the kidney.Results: Co-injection of lysine or Gelofusine was not effective for the reduction of kidney uptake of [Tc-99m]Tc(CO)(3)-G3. Administration of sodium maleate before the injection of [Tc-99m]Tc(CO)(3)-G3 reduced the kidney-associated activity by 60.4 +/- 10.3%, while administration of fructose reduced it by 46.9 +/- 7.6% compared with the control. The decrease in the kidney uptake provided by sodium maleate was also observed for [Tc-99m]Tc(CO)(3)-9_29 DARPin. Preinjection of colchicine, probenecid, mannitol, or furosemide had no effect on the kidney uptake of [Tc-99m]Tc(CO)(3)-G3. Kidney autoradiography showed mainly cortical accumulation of activity for all studied groups.Conclusion: Common clinical strategies were not effective for the reduction of kidney uptake of [Tc-99m]Tc(CO)(3)-G3. Both fructose and maleate lower the cellular ATP level in the proximal tubule cells and their reduction of the kidney reuptake indicates the involvement of an ATP-driven uptake mechanism. The decrease provided by maleate for both G3 and 9_29 DARPins indicates that their uptake proceeds through a mechanism independent of DARPin structure and binding site composition.
  •  
2.
  • Andersson, Ken G., et al. (författare)
  • Feasibility of imaging of epidermal growth factor receptor expression with ZEGFR:2377 affibody molecule labeled with Tc-99m using a peptide-based cysteine-containing chelator
  • 2016
  • Ingår i: International Journal of Oncology. - : SPANDIDOS. - 1019-6439 .- 1791-2423. ; 49:6, s. 2285-2293
  • Tidskriftsartikel (refereegranskat)abstract
    • The epidermal growth factor receptor (EGFR) is overexpressed in a number of malignant tumors and is a molecular target for several specific anticancer antibodies and tyrosine kinase inhibitors. The overexpression of EGFR is a predictive biomarker for response to several therapy regimens. Radionuclide molecular imaging might enable detection of EGFR overexpression by a non-invasive procedure and could be used repeatedly. Affibody molecules are engineered scaffold proteins, which could be selected to have a high affinity and selectivity to predetermined targets. The anti-EGFR ZEGFR:2377 affibody molecule is a potential imaging probe for EGFR detection. The use of the generator-produced radionuclide Tc-99m should facilitate clinical translation of an imaging probe due to its low price, availability and favorable dosimetry of the radionuclide. In the present study, we evaluated feasibility of ZEGFR:2377 labeling with Tc-99m using a peptide-based cysteine-containing chelator expressed at the C-terminus of ZEGFR:2377. The label was stable in vitro under cysteine challenge. In addition, Tc-99m-ZEGFR:2377 was capable of specific binding to EGFR-expressing cells with high affinity (274 pM). Studies in BALB/C nu/nu mice bearing A431 xenografts demonstrated that Tc-99m-ZEGFR:2377 accumulates in tumors in an EGFR-specific manner. The tumor uptake values were 3.6 1 and 2.5 0.4% ID/g at 3 and 24 h after injection, respectively. The corresponding tumor-to-blood ratios were 1.8 0.4 and 8 3. The xenografts were clearly visualized at both time-points. This study demonstrated the potential of Tc-99m-labeled ZEGFR:2377 for imaging of EGFR in vivo.
  •  
3.
  • Bragina, Olga, et al. (författare)
  • Phase I study of 99mTc-ADAPT6, a scaffold protein-based probe for visualization of HER2 expression in breast cancer
  • Annan publikation (övrigt vetenskapligt)abstract
    • Radionuclide molecular imaging of human epidermal growth factor (HER2) expression may be helpful to stratify breast and gastroesophageal cancer patients for HER2-targeting therapies. ADAPTs (albumin-binding domain derived affinity proteins) are a new type of small (46-59 amino acids) proteins useful as probes for molecular imaging. The aim of this first in-human study was to evaluate biodistribution, dosimetry, and safety of HER2-specific 99mTc-ADAPT6.METHODS. Twenty-two patients with HER2-positive (n=11) or HER2-negative (n=11) primary breast cancer were intravenously injected with 385125 MBq. The injected amount of protein was either 500 μg (n=11) or 1000 μg (n=11). Planar scintigraphy followed by SPECT imaging was performed after 2, 4, 6 and 24 h. An additional cohort received a dose of 250 μg, and the planar scintigraphy followed by SPECT imaging was performed after 2 h only.RESULTS. Injection of 99mTc-ADAPT6 was well tolerated for all doses evaluated in the study, and was not associated with any adverse effects. 99mTc-ADAPT6 cleared rapidly from the blood and the majority of tissues. The normal organs with the highest accumulation were kidney, liver and lung. The effective doses were determined to 0.0090.002 and 0.0100.003 mSv/MBq when injecting protein amounts of 500 and 1000 μg, respectively. Injection of 500 μg resulted in excellent discrimination between HER2-positive and HER2-negative tumors already 2 h after injection (tumor-to-contralateral breast ratio was 3719 vs 52, p < 0.01). The tumor-to-contralateral breast ratios for HER2-positive tumors were significantly (p < 0.5) higher for the injected  mass of 500 μg than for both 250 and 1000 μg. In one patient, the imaging using 99mTc-ADAPT6 revealed three bone metastases, which were not found at the time of diagnosis by CT or 99mTcpyrophosphate bone scan. MRI imaging confirmed this finding.CONCLUSION. Injections of 99mTc-ADAPT6 are safe and associated with low absorbed and effective doses. A protein dose of 500 μg is preferable for discrimination between tumors with high and low expression of HER2. 99mTc-ADAPT6 is a promising imaging probe for the stratification of patients for HER2-targeting therapy.
  •  
4.
  • Bragina, Olga, et al. (författare)
  • Phase I study of 99mTc-ADAPT6, a scaffold protein-based probe for visualization of HER2 expression in breast cancer
  • 2021
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 62:4, s. 493-499
  • Tidskriftsartikel (refereegranskat)abstract
    • Radionuclide molecular imaging of human epidermal growth factor (HER2) expression may be helpful to stratify breast and gastroesophageal cancer patients for HER2-targeting therapies. ADAPTs (albumin-binding domain derived affinity proteins) are a new type of small (46-59 amino acids) proteins useful as probes for molecular imaging. The aim of this first-in-human study was to evaluate biodistribution, dosimetry, and safety of the HER2-specific 99mTc-ADAPT6.METHODS: Twenty-nine patients with primary breast cancerwere included. In 22 patients with HER2-positive (n = 11) or HER2-negative (n = 11) histopathology an intravenous injection with 385±125 MBq 99mTc-ADAPT6 was performed, randomized to an injected protein mass of either 500 µg (n = 11) or 1000 µg (n = 11). Planar scintigraphy followed by SPECT imaging was performed after 2, 4, 6 and 24 h. An additional cohort (n = 7) was injected with 165±29 MBq (injected protein mass 250 µg) and imaging was performed after 2 h only.RESULTS: Injections of 99mTc-ADAPT6 at all injected mass levels were well tolerated and not associated with adverse effects. 99mTc-ADAPT6 cleared rapidly from blood and most other tissues. The normal organs with the highest accumulation were kidney, liver and lung. Effective doses were 0.009±0.002 and 0.010±0.003 mSv/MBq for injected protein masses of 500 and 1000 µg, respectively. Injection of 500 µg resulted in excellent discrimination between HER2-positive and HER2-negative tumors already 2 h after injection (tumor-to-contralateral breast ratio was 37±19 vs 5±2, p<0.01). The tumor-to-contralateral breast ratios for HER2-positive tumors were significantly (p<0.05) higher for injected mass of 500 µg than for both 250 and 1000 µg.CONCLUSION: Injections of 99mTc-ADAPT6 are safe and associated with low absorbed and effective doses. Protein dose of 500 µg is preferable for discrimination between tumors with high and low expression of HER2. Further studies are justified to evaluate if 99mTc-ADAPT6 can be used as an imaging probe for stratification of patients for HER2-targeting therapy in the areas where PET imaging is not readily available.
  •  
5.
  • Deyev, Sergey, et al. (författare)
  • Comparative Evaluation of Two DARPin Variants : Effect of Affinity, Size, and Label on Tumor Targeting Properties
  • 2019
  • Ingår i: Molecular Pharmaceutics. - : AMER CHEMICAL SOC. - 1543-8384 .- 1543-8392. ; 16:3, s. 995-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • Designed ankyrin repeat proteins (DARPins) are small engineered scaffold proteins that can be selected for binding to desirable molecular targets. High affinity and small size of DARPins render them promising probes for radionuclide molecular imaging. However, detailed knowledge on many factors influencing their imaging properties is still lacking. We have evaluated two human epidermal growth factor 2 (HER2)-specific DARPins with different size and binding properties. DARPins 9_29-H-6 and G3-H-6 were radiolabeled with iodine-125 and tricarbonyl technetium-99m and evaluated in vitro. A side-by-side comparison of biodistribution and tumor targeting was performed. HER2-specific tumor accumulation of G3-H-6 was demonstrated. A combination of smaller size and higher affinity resulted in a higher tumor uptake of G3-H-6 in comparison to 9_29-H6. Technetium-99m labeled G3-H-6 demonstrated a better biodistribution profile than 9_29-H-6, with several-fold lower uptake in liver. Radioiodinated G3-H-6 showed the best tumor-to-organ ratios. The combined effect of affinity, molecular weight, scaffold composition, and nonresidualizing properties of iodine label provided radioiodinated G3-H-6 with high clinical potential for imaging of HER2.
  •  
6.
  • Deyev, Sergey M., et al. (författare)
  • Effect of a radiolabel biochemical nature on tumor-targeting properties of EpCAM-binding engineered scaffold protein DARPin Ec1
  • 2020
  • Ingår i: International Journal of Biological Macromolecules. - : ELSEVIER. - 0141-8130 .- 1879-0003. ; 145, s. 216-225
  • Tidskriftsartikel (refereegranskat)abstract
    • Radionuclide-based imaging of molecular therapeutic targets might facilitate stratifying patients for specific biotherapeutics. New type of imaging probes, based on designed ankyrin repeat proteins (DARPins), have demonstrated excellent contrast of imaging of human epidermal growth factor type 2 (HER2) expression in preclinical models. We hypothesized that labeling approaches, which result in lipophilic radiometabolites (non-residualizing labels), would provide the best imaging contrast for DARPins that internalize slowly after binding to cancer cells. The hypothesis was tested using DARPin Ec1 that binds to epithelial cell adhesion molecule (EpCAM). EpCAM is a promising therapeutic target. Ec1 was labeled with I-125 using two methods to obtain the non-residualizing labels, while residualizing labels were obtained by labeling it with Tc-99m. All labeled Ec1 variants preserved target specificity and picomolar binding affinity to EpCAM-expressing pancreatic adenocarcinoma BxPC-3 cells. In murine models, all the variants provided similar tumor uptake. However, I-125-PIB-H-6-Ec1 had noticeably lower retention in normal tissues, which provided appreciably higher tumor-to-organ ratios. Furthermore, I-125-PIB-H-6-Ec1 demonstrated the highest imaging contrast in preclinical models than any other EpCAM-imaging agent tested so far. In conclusion, DARPin Ec1 in combination with a non-residualizing label is a promising probe for imaging EpCAM expression a few hours after injection.
  •  
7.
  • Deyev, Sergey M., et al. (författare)
  • Influence of the Position and Composition of Radiometals and Radioiodine Labels on Imaging of Epcam Expression in Prostate Cancer Model Using the DARPin Ec1
  • 2021
  • Ingår i: Cancers. - : MDPI. - 2072-6694. ; 13:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Simple Summary Metastasis-targeting therapy might improve outcomes in oligometastatic prostate cancer. Epithelial cell adhesion molecule (EpCAM) is overexpressed in 40-60% of prostate cancer cases and might be used as a target for specific delivery of toxins and drugs. Radionuclide molecular imaging could enable non-invasive detection of EpCAM and stratification of patients for targeted therapy. Designed ankyrin repeat proteins (DARPins) are scaffold proteins, which can be selected for specific binding to different targets. The DARPin Ec1 binds strongly to EpCAM. To determine an optimal design of Ec1-based probes, we labeled Ec1 at two different positions with four different nuclides (Ga-68, In-111, Co-57 and I-125) and investigated the impact on Ec1 biodistribution. We found that the C-terminus is the best position for labeling and that In-111 and I-125 provide the best imaging contrast. This study might be helpful for scientists developing imaging probes based on scaffold proteins. The epithelial cell adhesion molecule (EpCAM) is intensively overexpressed in 40-60% of prostate cancer (PCa) cases and can be used as a target for the delivery of drugs and toxins. The designed ankyrin repeat protein (DARPin) Ec1 has a high affinity to EpCAM (68 pM) and a small size (18 kDa). Radiolabeled Ec1 might be used as a companion diagnostic for the selection of PCa patients for therapy. The study aimed to investigate the influence of radiolabel position (N- or C-terminal) and composition on the targeting and imaging properties of Ec1. Two variants, having an N- or C-terminal cysteine, were produced, site-specifically conjugated to a DOTA chelator and labeled with cobalt-57, gallium-68 or indium-111. Site-specific radioiodination was performed using ((4-hydroxyphenyl)-ethyl)maleimide (HPEM). Biodistribution of eight radiolabeled Ec1-probes was measured in nude mice bearing PCa DU145 xenografts. In all cases, positioning of a label at the C-terminus provided the best tumor-to-organ ratios. The non-residualizing [I-125]I-HPEM label provided the highest tumor-to-muscle and tumor-to-bone ratios and is more suitable for EpCAM imaging in early-stage PCa. Among the radiometals, indium-111 provided the highest tumor-to-blood, tumor-to-lung and tumor-to-liver ratios and could be used at late-stage PCa. In conclusion, label position and composition are important for the DARPin Ec1.
  •  
8.
  • Ding, Haozhong, et al. (författare)
  • HER2-Specific Pseudomonas Exotoxin A PE25 Based Fusions : Influence of Targeting Domain on Target Binding, Toxicity, and In Vivo Biodistribution
  • 2020
  • Ingår i: Pharmaceutics. - : MDPI AG. - 1999-4923 .- 1999-4923. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The human epidermal growth factor receptor 2 (HER2) is a clinically validated target for cancer therapy, and targeted therapies are often used in regimens for patients with a high HER2 expression level. Despite the success of current drugs, a number of patients succumb to their disease, which motivates development of novel drugs with other modes of action. We have previously shown that an albumin binding domain-derived affinity protein with specific affinity for HER2, ADAPT(6), can be used to deliver the highly cytotoxic protein domain PE25, a derivative of Pseudomonas exotoxin A, to HER2 overexpressing malignant cells, leading to potent and specific cell killing. In this study we expanded the investigation for an optimal targeting domain and constructed two fusion toxins where a HER2-binding affibody molecule, Z(HER2:2891), or the dual-HER2-binding hybrid Z(HER2:2891)-ADAPT(6) were used for cancer cell targeting. We found that both targeting domains conferred strong binding to HER2; both to the purified extracellular domain and to the HER2 overexpressing cell line SKOV3. This resulted in fusion toxins with high cytotoxic potency toward cell lines with high expression levels of HER2, with EC50 values between 10 and 100 pM. For extension of the plasma half-life, an albumin binding domain was also included. Intravenous injection of the fusion toxins into mice showed a profound influence of the targeting domain on biodistribution. Compared to previous results, with ADAPT(6) as targeting domain, Z(HER2:2891) gave rise to further extension of the plasma half-life and also shifted the clearance route of the fusion toxin from the liver to the kidneys. Collectively, the results show that the targeting domain has a major impact on uptake of PE25-based fusion toxins in different organs. The results also show that PE25-based fusion toxins with high affinity to HER2 do not necessarily increase the cytotoxicity beyond a certain point in affinity. In conclusion, Z(HER2:2891) has the most favorable characteristics as targeting domain for PE25.
  •  
9.
  • Garousi, Javad, et al. (författare)
  • ADAPT, a Novel Scaffold Protein-Based Probe for Radionuclide Imaging of Molecular Targets That Are Expressed in Disseminated Cancers
  • 2015
  • Ingår i: Cancer Research. - : American Association for Cancer Research Inc.. - 0008-5472 .- 1538-7445. ; 75:20, s. 4364-4371
  • Tidskriftsartikel (refereegranskat)abstract
    • Small engineered scaffold proteins have attracted attention as probes for radionuclide-based molecular imaging. One class of these imaging probes, termed ABD-Derived Affinity Proteins (ADAPT), has been created using the albumin-binding domain (ABD) of streptococcal protein G as a stable protein scaffold. In this study, we report the development of a clinical lead probe termed ADAPT6 that binds HER2, an oncoprotein overexpressed in many breast cancers that serves as a theranostic biomarker for several approved targeting therapies. Surface-exposed amino acids of ABD were randomized to create a combinatorial library enabling selection of high-affinity binders to various proteins. Furthermore, ABD was engineered to enable rapid purification, to eradicate its binding to albumin, and to enable rapid blood clearance. Incorporation of a unique cysteine allowed site-specific conjugation to a maleimido derivative of a DOTA chelator, enabling radionuclide labeling, In-111 for SPECT imaging and Ga-68 for PET imaging. Pharmacologic studies in mice demonstrated that the fully engineered molecule In-111/Ga-68-DOTA(HE) 3-ADAPT6 was specifically bound and taken up by HER2-expressing tumors, with a high tumor-to-normal tissue ratio in xenograft models of human cancer. Unbound tracer underwent rapid renal clearance followed by high renal reabsorption. HER2-expressing xenografts were visualized by gamma-camera or PET at 1 hour after infusion. PET experiments demonstrated feasibility for discrimination of xenografts with high or low HER2 expression. Our results offer a preclinical proof of concept for the use of ADAPT probes for noninvasive in vivo imaging.
  •  
10.
  • Garousi, Javad, et al. (författare)
  • Comparative evaluation of affibody- and antibody fragments-based CAIX imaging probes in mice bearing renal cell carcinoma xenografts
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbonic anhydrase IX (CAIX) is a cancer-associated molecular target for several classes of therapeutics. CAIX is overexpressed in a large fraction of renal cell carcinomas (RCC). Radionuclide molecular imaging of CAIX-expression might offer a non-invasive methodology for stratification of patients with disseminated RCC for CAIX-targeting therapeutics. Radiolabeled monoclonal antibodies and their fragments are actively investigated for imaging of CAIX expression. Promising alternatives are small non-immunoglobulin scaffold proteins, such as affibody molecules. A CAIX-targeting affibody ZCAIX:2 was re-designed with the aim to decrease off-target interactions and increase imaging contrast. The new tracer, DOTA-HE3-ZCAIX:2, was labeled with In-111 and characterized in vitro. Tumor-targeting properties of [In-111]In-DOTA-HE3-ZCAIX:2 were compared head-to-head with properties of the parental variant, [(99)mTc]Tc(CO)(3)-HE3-ZCAIX:2, and the most promising antibody fragment-based tracer, [In-111]In-DTPA-G250(Fab')(2), in the same batch of nude mice bearing CAIX-expressing RCC xenografts. Compared to the (99)mTc-labeled parental variant, [In-111]In-DOTA-HE3-ZCAIX:2 provides significantly higher tumor-to-lung, tumor-to-bone and tumor-to-liver ratios, which is essential for imaging of CAIX expression in the major metastatic sites of RCC. [In-111]In-DOTA-HE3-ZCAIX:2 offers significantly higher tumor-to-organ ratios compared with [In-111]In-G250(Fab']2. In conclusion, [In-111]In-DOTA-HE3-ZCAIX:2 can be considered as a highly promising tracer for imaging of CAIX expression in RCC metastases based on our results and literature data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 49
  • [1]2345Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy