SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gasser T) ;pers:(Roy J.)"

Search: WFRF:(Gasser T) > Roy J.

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gasser, T. Christian, et al. (author)
  • A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk : Method and retrospective validation
  • 2014
  • In: European Journal of Vascular and Endovascular Surgery. - : Elsevier BV. - 1078-5884 .- 1532-2165. ; 47:3, s. 288-295
  • Journal article (peer-reviewed)abstract
    • Objective: To translate the individual abdominal aortic aneurysm (AAA) patient's biomechanical rupture risk profile to risk-equivalent diameters, and to retrospectively test their predictability in ruptured and non-ruptured aneurysms. Methods: Biomechanical parameters of ruptured and non-ruptured AAAs were retrospectively evaluated in a multicenter study. General patient data and high resolution computer tomography angiography (CTA) images from 203 non-ruptured and 40 ruptured aneurysmal infrarenal aortas. Three-dimensional AAA geometries were semi-automatically derived from CTA images. Finite element (FE) models were used to predict peak wall stress (PWS) and peak wall rupture index (PWRI) according to the individual anatomy, gender, blood pressure, intraluminal thrombus (ILT) morphology, and relative aneurysm expansion. Average PWS diameter and PWRI diameter responses were evaluated, which allowed for the PWS equivalent and PWRI equivalent diameters for any individual aneurysm to be defined. Results: PWS increased linearly and PWRI exponentially with respect to maximum AAA diameter. A size-adjusted analysis showed that PWS equivalent and PWRI equivalent diameters were increased by 7.5 mm (p = .013) and 14.0 mm (p < .001) in ruptured cases when compared to non-ruptured controls, respectively. In non-ruptured cases the PWRI equivalent diameters were increased by 13.2 mm (p < .001) in females when compared with males. Conclusions: Biomechanical parameters like PWS and PWRI allow for a highly individualized analysis by integrating factors that influence the risk of AAA rupture like geometry (degree of asymmetry, ILT morphology, etc.) and patient characteristics (gender, family history, blood pressure, etc.). PWRI and the reported annual risk of rupture increase similarly with the diameter. PWRI equivalent diameter expresses the PWRI through the diameter of the average AAA that has the same PWRI, i.e. is at the same biomechanical risk of rupture. Consequently, PWRI equivalent diameter facilitates a straightforward interpretation of biomechanical analysis and connects to diameter-based guidelines for AAA repair indication. PWRI equivalent diameter reflects an additional diagnostic parameter that may provide more accurate clinical data for AAA repair indication.
  •  
2.
  • Gasser, T. Christian, et al. (author)
  • A quarter of a century biomechanical rupture risk assessment of abdominal aortic aneurysms. Achievements, clinical relevance, and ongoing developments
  • 2022
  • In: International Journal for Numerical Methods in Biomedical Engineering. - : Wiley. - 2040-7939 .- 2040-7947.
  • Journal article (peer-reviewed)abstract
    • Abdominal aortic aneurysm (AAA) disease, the local enlargement of the infrarenal aorta, is a serious condition that causes many deaths, especially in men exceeding 65 years of age. Over the past quarter of a century, computational biomechanical models have been developed towards the assessment of AAA risk of rupture, technology that is now on the verge of being integrated within the clinical decision-making process. The modeling of AAA requires a holistic understanding of the clinical problem, in order to set appropriate modeling assumptions and to draw sound conclusions from the simulation results. In this article we summarize and critically discuss the proposed modeling approaches and report the outcome of clinical validation studies for a number of biomechanics-based rupture risk indices. Whilst most of the aspects concerning computational mechanics have already been settled, it is the exploration of the failure properties of the AAA wall and the acquisition of robust input data for simulations that has the greatest potential for the further improvement of this technology.
  •  
3.
  • Gasser, T. Christian, et al. (author)
  • Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms : Model Complexity versus Predictability of Finite Element Simulations
  • 2010
  • In: European Journal of Vascular and Endovascular Surgery. - : Elsevier BV. - 1078-5884 .- 1532-2165. ; 40:2, s. 176-185
  • Journal article (peer-reviewed)abstract
    • Objective: Investigation of the predictability of finite element (FE) models regarding rupture risk assessment of abdominal aortic aneurysms (AAAs). Materials and materials: Peak wall stress (PWS) and peak wall rupture risk (PWRR) of ruptured (n = 20) and non-ruptured (n = 30) AAAs were predicted by four FE models of different complexities derived from computed tomography (CT) data. Two matching sub-groups of ruptured and non-ruptured aneurysms were used to investigate the usability of different FE models to discriminate amongst them. Results: All FE models exhibited a strong positive correlation between PWS and PWRR with the maximum diameter. FE models, which excluded the intra-luminal thrombus (ILT) failed to discriminate between ruptured and non-ruptured aneurysms. The predictability of all applied FE models was strengthened by including wall strength data, that is, computing the PWRR. The most sophisticated FE model applied in this study predicted PWS and PWRR 1.17 (p = 0.021) and 1.43 (p = 0.016) times higher in ruptured than diameter-matched non-ruptured aneurysms, respectively. Conclusions: PWRR reinforces PWS as a biomechanical rupture risk index. The ILT has a major impact on AAA biomechanics and rupture risk, and hence, needs to be considered in meaningful FE simulations. The applied FE models, however, could not explain rupture in all analysed aneurysms.
  •  
4.
  • Larsson, David, et al. (author)
  • An ex-vivo setup for characterization of atherosclerotic plaque using shear wave elastography and micro-computed tomography
  • 2016
  • In: IEEE International Ultrasonics Symposium, IUS. - : IEEE conference proceedings. - 9781467398978
  • Conference paper (peer-reviewed)abstract
    • Quantification of the mechanical properties of atherosclerotic plaque has shown to be important in assessing carotid artery plaque vulnerability. For such, shear wave elastography (SWE) has been applied on both in-vitro and in-vivo setups. The aim of this study was to build an ex-vivo setup for combined evaluation of plaque characteristics using SWE and micro-computed tomography (μCT). As a proof-of-concept of the constructed experimental setup, a single human carotid plaque specimen was extracted during carotid endarterectomy. The plaque was imaged in the μCT system, and subsequently imaged using SWE. For the SWE measurement, group and phase velocity was extracted from the obtained in-phase/quadrature data, with its spatial distribution being compared to anatomical features visible in the μCT images. The results indicated wave velocity changes at boundaries identified in the μCT, with group velocity data slightly increasing when entering a calcified nodule. Additionally, μCT images seemed to provide good contrast between several plaque constituens using the defined imaging settings. Overall, the study represents a proof-of-concept for detailed ex-vivo plaque analysis using combined SWE and μCT, with obtained wave speed and shear modulus values falling within observed values for atherosclerotic plaque tissue. With an experimental setup defined, future studies on carotid plaque behaviour both in SWE and μCT is enabled, where a large-scale plaque study could be performed to investigate the ability of SWE to differentiate between different plaque types.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view