SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gatu Johnson Maria) ;pers:(Källne Jan)"

Sökning: WFRF:(Gatu Johnson Maria) > Källne Jan

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tardocchi, M., et al. (författare)
  • Modeling of neutron emission spectroscopy in JET discharges with fast tritons from (T)D ion cyclotron heating
  • 2006
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 77:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The measurement of fast ion populations is one of the diagnostic capabilities provided by neutron emission spectroscopy (NES). NES measurements were carried out during JET trace tritium campaign with the magnetic proton recoil neutron spectrometer. A favorable plasma scenario is (T)D where the resulting 14 MeV neutron yield is dominated by suprathermal emission from energetic tritons accelerated by radio frequency at their fundamental cyclotron frequency. Information on the triton distribution function has been derived from NES data with a simple model based on two components referred to as bulk (B) and high energy (HE). The HE component is based on strongly anisotropic tritium distribution that can be used for routine best-fit analysis to provide tail temperature values (T-HE). This article addresses to what extent the T-HE values are model dependent by comparing the model above with a two-temperature (bi-) Maxwellian model featuring parallel and perpendicular temperatures. The bi-Maxwellian model is strongly anisotropic and frequently used for radio frequency theory.
  •  
2.
  •  
3.
  • Andersson Sundén, Erik, et al. (författare)
  • Instrumentation for neutron emission spectrometry in use at JET
  • 2010
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 623:2, s. 681-685
  • Tidskriftsartikel (refereegranskat)abstract
    • The present contribution discusses two neutron spectrometers: the time-of-flight spectrometer (TOFOR) and the magnetic proton recoil spectrometer (MPRu). TOFOR uses fast plastic scintillators equipped with digital time-stamping electronics to register the time of each eligible scintillation event. The time trace for each detector is acquired practically dead-time free. The detectors of the MPRu are of phoswich type and each detector is connected to a digital transient recorder card that stores the full waveform for an event. By using phoswich detectors, pulse-shape discrimination techniques can be applied offline to distinguish signal events from background. A future upgrade of TOFOR could be digital “hybrid” cards, which store correlated time and waveform information. This information can be used to decrease the background level in the ttof spectrum, thereby increasing the operating range.
  •  
4.
  • Andersson Sundén, Erik, et al. (författare)
  • The thin-foil magnetic proton recoil neutron spectrometer MPRu at JET
  • 2009
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 610:3, s. 682-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrons are produced in fusion energy experiments with both deuterium (D) and deuterium–tritium (DT) plasmas. Neutron spectroscopy is a valuable tool in the study of the underlying fuel ion populations. The magnetic proton recoil neutron spectrometer, originally installed at JET in 1996 for 14-MeV neutron measurements, has been upgraded, with the main aim of improving its signal-to-background ratio (S/B), making measurements of the 2.5-MeV neutron emission in D plasmas possible. The upgrade includes a new focal-plane detector, based on the phoswich technique and consequently less sensitive to background, and a new custom-designed digital data acquisition system based on transient recorder cards. Results from JET show that the upgraded MPRu can measure 2.5-MeV neutrons with S/B=5, an improvement by a factor of 50 compared with the original MPR. S/B of 2.8×104 in future DT experiments is estimated. The performance of the MPRu is exemplified with results from recent D plasma operations at JET, concerning both measurements with Ohmic, ion cyclotron resonance (ICRH) and neutral beam injection (NBI) plasma heating, as well as measurements of tritium burn-up neutrons. The upgraded instrument allows for 2.5-MeV neutron emission and deuterium ion temperature measurements in plasmas with low levels of tritium, a feature necessary for the ITER experiment.
  •  
5.
  • Gatu Johnson, Maria, et al. (författare)
  • The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET
  • 2008
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 591:2, s. 417-430
  • Tidskriftsartikel (refereegranskat)abstract
    • A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range, including high rates of > 100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron TOF spectra recorded for plasmas subjected to different heating scenarios. A true event count rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth, where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to > 5 MeV. The implications of instrumental advancement represented by TOFOR are discussed.
  •  
6.
  • Gatu Johnson, Maria, 1978-, et al. (författare)
  • The TOFOR neutron spectrometer and its first use at JET
  • 2006
  • Ingår i: Review of Scientific Instruments. - American Institute of Physics : AIP Publishing. - 0034-6748 .- 1089-7623. ; 77:10E702, s. 1-3
  • Tidskriftsartikel (refereegranskat)abstract
    • A time-of-flight neutron spectrometer (TOFOR) has been developed to measure the 2.45  MeV  d+d3He+n neutron emission from D plasmas. The TOFOR design features the capability to operate at high rates in the 100  kHz range, data collection with fast time digitizing and storing, and monitoring of the signals from the scintillation detectors used. This article describes the principles of the instrument and its installation at JET and presents preliminary data to illustrate the TOFOR performance as a neutron emission spectroscopy diagnostic.
  •  
7.
  •  
8.
  • Giacomelli, Luca, et al. (författare)
  • Advanced Neutron Diagnostics for JET and ITER Fusion Experiments
  • 2005
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 45, s. 1191-1201
  • Tidskriftsartikel (refereegranskat)abstract
    • The diagnostics functions of neutron measurements as well as the roles played by neutron yield monitors, cameras and spectrometers are reviewed. The importance of recent developments in neutron emission spectroscopy (NES) diagnostics is emphasized. Results are presented from the NES diagnosis of the Joint European Torus (JET) plasmas performed with the magnetic proton recoil (MPR) spectrometer during the first deuterium tritium experiment of 1997 and the recent trace tritium experiment of 2003. The NES diagnostic capabilities at JET are presently being enhanced by an upgrade of the MPR (MPRu) and a new 2.5 MeV time-of-flight (TOF) neutron spectrometer (TOFOR). The principles of MPRu and TOFOR are described and illustrated with the diagnostic role they will play in the high performance fusion experiments in the forward programme of JET largely aimed at supporting the International Thermonuclear Experimental Reactor (ITER). The importance of the JET NES effort for ITER is discussed.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy