SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gatu Johnson Maria) ;pers:(Popovichev S)"

Sökning: WFRF:(Gatu Johnson Maria) > Popovichev S

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson Sundén, Erik, et al. (författare)
  • The thin-foil magnetic proton recoil neutron spectrometer MPRu at JET
  • 2009
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 610:3, s. 682-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrons are produced in fusion energy experiments with both deuterium (D) and deuterium–tritium (DT) plasmas. Neutron spectroscopy is a valuable tool in the study of the underlying fuel ion populations. The magnetic proton recoil neutron spectrometer, originally installed at JET in 1996 for 14-MeV neutron measurements, has been upgraded, with the main aim of improving its signal-to-background ratio (S/B), making measurements of the 2.5-MeV neutron emission in D plasmas possible. The upgrade includes a new focal-plane detector, based on the phoswich technique and consequently less sensitive to background, and a new custom-designed digital data acquisition system based on transient recorder cards. Results from JET show that the upgraded MPRu can measure 2.5-MeV neutrons with S/B=5, an improvement by a factor of 50 compared with the original MPR. S/B of 2.8×104 in future DT experiments is estimated. The performance of the MPRu is exemplified with results from recent D plasma operations at JET, concerning both measurements with Ohmic, ion cyclotron resonance (ICRH) and neutral beam injection (NBI) plasma heating, as well as measurements of tritium burn-up neutrons. The upgraded instrument allows for 2.5-MeV neutron emission and deuterium ion temperature measurements in plasmas with low levels of tritium, a feature necessary for the ITER experiment.
  •  
2.
  • Gatu Johnson, Maria, et al. (författare)
  • Modelling and TOFOR measurements of scattered neutrons at JET
  • 2010
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 52:8, s. 085002-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, the scattered and direct neutron fluxes in the line of sight (LOS) of the TOFOR neutron spectrometer at JET are simulated and the simulations compared with measurement results. The Monte Carlo code MCNPX is used in the simulations, with a vessel material composition obtained from the JET drawing office and neutron emission profiles calculated from TRANSP simulations of beam ion density profiles. The MCNPX simulations show that the material composition of the scattering wall has a large effect on the shape of the scattered neutron spectrum. Neutron source profile shapes as well as radial and vertical source displacements in the TOFOR LOS are shown to only marginally affect the scatter, while having a larger impact on the direct neutron flux. A matrix of simulated scatter spectra for mono-energetic source neutrons is created which is folded with an approximation of the source spectrum for each JET pulse studied to obtain a scatter component for use in the data analysis. The scatter components thus obtained are shown to describe the measured data. It is also demonstrated that the scattered flux is approximately constant relative to the total neutron yield as measured with the JET fission chambers, while there is a larger spread in the direct flux, consistent with simulations. The simulated effect on the integrated scattered/direct ratio of an increase with movements outward along the radial direction and a drop at higher values of the vertical plasma position is also reproduced in the measurements. Finally, the quantitative agreement found in scatter/direct ratios between simulations (0.185 ± 0.005) and measurements (0.187 ± 0.050) serves as a solid benchmark of the MCNPX model used.
  •  
3.
  • Gatu Johnson, Maria, et al. (författare)
  • The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET
  • 2008
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 591:2, s. 417-430
  • Tidskriftsartikel (refereegranskat)abstract
    • A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range, including high rates of > 100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron TOF spectra recorded for plasmas subjected to different heating scenarios. A true event count rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth, where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to > 5 MeV. The implications of instrumental advancement represented by TOFOR are discussed.
  •  
4.
  • Giacomelli, Luca, et al. (författare)
  • Advanced Neutron Diagnostics for JET and ITER Fusion Experiments
  • 2005
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 45, s. 1191-1201
  • Tidskriftsartikel (refereegranskat)abstract
    • The diagnostics functions of neutron measurements as well as the roles played by neutron yield monitors, cameras and spectrometers are reviewed. The importance of recent developments in neutron emission spectroscopy (NES) diagnostics is emphasized. Results are presented from the NES diagnosis of the Joint European Torus (JET) plasmas performed with the magnetic proton recoil (MPR) spectrometer during the first deuterium tritium experiment of 1997 and the recent trace tritium experiment of 2003. The NES diagnostic capabilities at JET are presently being enhanced by an upgrade of the MPR (MPRu) and a new 2.5 MeV time-of-flight (TOF) neutron spectrometer (TOFOR). The principles of MPRu and TOFOR are described and illustrated with the diagnostic role they will play in the high performance fusion experiments in the forward programme of JET largely aimed at supporting the International Thermonuclear Experimental Reactor (ITER). The importance of the JET NES effort for ITER is discussed.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy