SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gehring Ulrike) ;pers:(Sunyer Jordi)"

Sökning: WFRF:(Gehring Ulrike) > Sunyer Jordi

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eijkemans, Marianne, et al. (författare)
  • Physical activity, sedentary behaviour, and childhood asthma: a European collaborative analysis
  • 2024
  • Ingår i: BMJ Open Respiratory Research. - : BMJ PUBLISHING GROUP. - 2052-4439. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives To investigate the associations of physical activity (PA) and sedentary behaviour in early childhood with asthma and reduced lung function in later childhood within a large collaborative study.Design Pooling of longitudinal data from collaborating birth cohorts using meta-analysis of separate cohort-specific estimates and analysis of individual participant data of all cohorts combined.Setting Children aged 0-18 years from 26 European birth cohorts.Participants 136 071 individual children from 26 cohorts, with information on PA and/or sedentary behaviour in early childhood and asthma assessment in later childhood.Main outcome measure Questionnaire-based current asthma and lung function measured by spirometry (forced expiratory volume in 1 s (FEV1), FEV1/forced vital capacity) at age 6-18 years.Results Questionnaire-based and accelerometry-based PA and sedentary behaviour at age 3-5 years was not associated with asthma at age 6-18 years (PA in hours/day adjusted OR 1.01, 95% CI 0.98 to 1.04; sedentary behaviour in hours/day adjusted OR 1.03, 95% CI 0.99 to 1.07). PA was not associated with lung function at any age. Analyses of sedentary behaviour and lung function showed inconsistent results.Conclusions Reduced PA and increased sedentary behaviour before 6 years of age were not associated with the presence of asthma later in childhood.
  •  
2.
  • Guxens, Monica, et al. (författare)
  • Air pollution exposure during pregnancy and childhood autistic traits in four European population-based cohort studies : the ESCAPE project
  • 2016
  • Ingår i: Environmental Health Perspectives. - Stockholm : Karolinska Institutet, Dept of Medical Epidemiology and Biostatistics. - 0091-6765 .- 1552-9924.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Prenatal exposure to air pollutants has been suggested as a possible etiologic factor for the occurrence of autism spectrum disorder. Objectives: We aimed to assess whether prenatal air pollution exposure is associated with childhood autistic traits in the general population. Methods: Ours was a collaborative study of four European population-based birth/child cohorts— CATSS (Sweden), Generation R (the Netherlands), GASPII (Italy), and INMA (Spain). Nitrogen oxides (NO2, NOx) and particulate matter (PM) with diameters of ≤ 2.5 μm (PM2.5), ≤ 10 μm (PM10), and between 2.5 and 10 μm (PMcoarse), and PM2.5 absorbance were estimated for birth addresses by land-use regression models based on monitoring campaigns performed between 2008 and 2011. Levels were extrapolated back in time to exact pregnancy periods. We quantitatively assessed autistic traits when the child was between 4 and 10 years of age. Children were classified with autistic traits within the borderline/clinical range and within the clinical range using validated cut-offs. Adjusted cohort-specific effect estimates were combined using random-effects meta-analysis. Results: A total of 8,079 children were included. Prenatal air pollution exposure was not associated with autistic traits within the borderline/clinical range (odds ratio = 0.94; 95% CI: 0.81, 1.10 per each 10‑μg/m3 increase in NO2 pregnancy levels). Similar results were observed in the different cohorts, for the other pollutants, and in assessments of children with autistic traits within the clinical range or children with autistic traits as a quantitative score. Conclusions: Prenatal exposure to NO2 and PM was not associated with autistic traits in children from 4 to 10 years of age in four European population-based birth/child cohort studies.
  •  
3.
  • Neuman, Åsa, et al. (författare)
  • Maternal Smoking in Pregnancy and Asthma in Preschool Children A Pooled Analysis of Eight Birth Cohorts
  • 2012
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - 1073-449X .- 1535-4970. ; 186:10, s. 1037-1043
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Although epidemiological studies suggest that exposure to maternal smoking during fetal and early life increases the risk of childhood wheezing and asthma, previous studies were not able to differentiate the effects of prenatal from postnatal exposure. Objectives: To assess the effect of exposure to maternal smoking only during pregnancy on wheeze and asthma among preschool-age children. Methods: A pooled analysis was performed based on individual participant data from eight European birth cohorts. Cohort-specific effects of maternal smoking during pregnancy, but not during the first year, on wheeze and asthma at 4 to 6 years of age were estimated using logistic regression and then combined using a random effects model. Adjustments were made for sex, parental education, parental asthma, birth weight, and siblings. Measurements and Main Results: Among the 21,600 children included in the analysis, 735 children (3.4%) were exposed to maternal smoking exclusively during pregnancy but not in the first year after birth. In the pooled analysis, maternal smoking only during pregnancy was associated with wheeze and asthma at 4 to 6 years of age, with adjusted odds ratios of 1.39 (95% confidence interval, 1.08-1.77) and 1.65 (95% confidence interval, 1.18-2.31), respectively. The likelihood to develop wheeze and asthma increased statistically significantly in a linear dose-dependent manner in relation to maternal daily cigarette consumption during the first trimester of pregnancy. Conclusions: Maternal smoking during pregnancy appears to increase the risk of wheeze and asthma among children who are not exposed to maternal smoking after birth.
  •  
4.
  • Sonnenschein-van der Voort, Agnes M. M, et al. (författare)
  • Preterm birth, infant weight gain, and childhood asthma risk: A meta-analysis of 147,000 European children
  • 2014
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier. - 0091-6749 .- 1097-6825. ; 133:5, s. 1317-1329
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Preterm birth, low birth weight, and infant catch-up growth seem associated with an increased risk of respiratory diseases in later life, but individual studies showed conflicting results. Objectives: We performed an individual participant data meta-analysis for 147,252 children of 31 birth cohort studies to determine the associations of birth and infant growth characteristics with the risks of preschool wheezing (1-4 years) and school-age asthma (5-10 years). Methods: First, we performed an adjusted 1-stage random-effect meta-analysis to assess the combined associations of gestational age, birth weight, and infant weight gain with childhood asthma. Second, we performed an adjusted 2-stage random-effect meta-analysis to assess the associations of preterm birth (gestational age less than 37 weeks) and low birth weight (less than 2500 g) with childhood asthma outcomes. Results: Younger gestational age at birth and higher infant weight gain were independently associated with higher risks of preschool wheezing and school-age asthma (P less than. 05). The inverse associations of birth weight with childhood asthma were explained by gestational age at birth. Compared with term-born children with normal infant weight gain, we observed the highest risks of school-age asthma in children born preterm with high infant weight gain (odds ratio [OR], 4.47; 95% CI, 2.58-7.76). Preterm birth was positively associated with an increased risk of preschool wheezing (pooled odds ratio [pOR], 1.34; 95% CI, 1.25-1.43) and school-age asthma (pOR, 1.40; 95% CI, 1.18-1.67) independent of birth weight. Weaker effect estimates were observed for the associations of low birth weight adjusted for gestational age at birth with preschool wheezing (pOR, 1.10; 95% CI, 1.00-1.21) and school-age asthma (pOR, 1.13; 95% CI, 1.01-1.27). Conclusion: Younger gestational age at birth and higher infant weight gain were associated with childhood asthma outcomes. The associations of lower birth weight with childhood asthma were largely explained by gestational age at birth.
  •  
5.
  • van der Valk, Ralf J P, et al. (författare)
  • A novel common variant in DCST2 is associated with length in early life and height in adulthood.
  • 2015
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 24:4, s. 1155-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 × 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; β = 0.046, SE = 0.008, P = 2.46 × 10(-8), explained variance = 0.05%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 × 10(-4)) and adult height (N = 127 513; P = 1.45 × 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.
  •  
6.
  • van Meel, Evelien R., et al. (författare)
  • Early-life respiratory tract infections and the risk of school-age lower lung function and asthma: a meta-analysis of 150 000 European children
  • 2022
  • Ingår i: European Respiratory Journal. - : EUROPEAN RESPIRATORY SOC JOURNALS LTD. - 0903-1936 .- 1399-3003. ; 60:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Early-life respiratory tract infections might affect chronic obstructive respiratory diseases, but conclusive studies from general populations are lacking. Our objective was to examine if children with early-life respiratory tract infections had increased risks of lower lung function and asthma at school age. Methods We used individual participant data of 150 090 children primarily from the EU Child Cohort Network to examine the associations of upper and lower respiratory tract infections from age 6 months to 5 years with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, forced expiratory flow at 75% of FVC (FEF75%) and asthma at a median (range) age of 7 (4-15) years. Results Children with early-life lower, not upper, respiratory tract infections had a lower school-age FEV1, FEV1/FVC and FEF75% (z-score range: -0.09 (95% CI -0.14- -0.04) to -0.30 (95% CI -0.36- -0.24)). Children with early-life lower respiratory tract infections had a higher increased risk of school-age asthma than those with upper respiratory tract infections (OR range: 2.10 (95% CI 1.98-2.22) to 6.30 (95% CI 5.64-7.04) and 1.25 (95% CI 1.18-1.32) to 1.55 (95% CI 1.47-1.65), respectively). Adjustment for preceding respiratory tract infections slightly decreased the strength of the effects. Observed associations were similar for those with and without early-life wheezing as a proxy for early-life asthma. Conclusions Our findings suggest that early-life respiratory tract infections affect development of chronic obstructive respiratory diseases in later life, with the strongest effects for lower respiratory tract infections.
  •  
7.
  • Wang, Gang, et al. (författare)
  • Spirometric phenotypes from early childhood to young adulthood : a Chronic Airway Disease Early Stratification study
  • 2021
  • Ingår i: ERJ Open Research. - : ERS Publications. - 2312-0541. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The prevalences of obstructive and restrictive spirometric phenotypes, and their relation to early-life risk factors from childhood to young adulthood remain poorly understood. The aim was to explore these phenotypes and associations with well-known respiratory risk factors across ages and populations in European cohorts.Methods: We studied 49334 participants from 14 population-based cohorts in different age groups (⩽10, >10–15, >15–20, >20–25 years, and overall, 5–25 years). The obstructive phenotype was defined as forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) z-score less than the lower limit of normal (LLN), whereas the restrictive phenotype was defined as FEV1/FVC z-score ⩾LLN, and FVC z-score Results: The prevalence of obstructive and restrictive phenotypes varied from 3.2–10.9% and 1.8–7.7%, respectively, without clear age trends. A diagnosis of asthma (adjusted odds ratio (aOR=2.55, 95% CI 2.14–3.04), preterm birth (aOR=1.84, 1.27–2.66), maternal smoking during pregnancy (aOR=1.16, 95% CI 1.01–1.35) and family history of asthma (aOR=1.44, 95% CI 1.25–1.66) were associated with a higher prevalence of obstructive, but not restrictive, phenotype across ages (5–25 years). A higher current body mass index (BMI was more often observed in those with the obstructive phenotype but less in those with the restrictive phenotype (aOR=1.05, 95% CI 1.03–1.06 and aOR=0.81, 95% CI 0.78–0.85, per kg·m−2 increase in BMI, respectively). Current smoking was associated with the obstructive phenotype in participants older than 10 years (aOR=1.24, 95% CI 1.05–1.46).Conclusion: Obstructive and restrictive phenotypes were found to be relatively prevalent during childhood, which supports the early origins concept. Several well-known respiratory risk factors were associated with the obstructive phenotype, whereas only low BMI was associated with the restrictive phenotype, suggesting different underlying pathobiology of these two phenotypes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy