SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Giddaluru Sudheer) "

Sökning: WFRF:(Giddaluru Sudheer)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adams, Hieab H. H., et al. (författare)
  • Novel genetic loci underlying human intracranial volume identified through genome-wide association
  • 2016
  • Ingår i: Nature Neuroscience. - 1097-6256 .- 1546-1726. ; 19:12, s. 1569-1582
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (rho(genetic) = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N-combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.
  •  
2.
  • Duarte Fernandes, Carla Patricia, et al. (författare)
  • Lack of association of the rs1344706 ZNF804A variant with cognitive functions and DTI indices of white matter microstructure in two independent healthy populations
  • 2014
  • Ingår i: Psychiatry Research. - : Elsevier. - 0925-4927 .- 1872-7506. ; 222:1-2, s. 60-66
  • Tidskriftsartikel (refereegranskat)abstract
    • The rs1344706 single nucleotide polymorphism with in intron 2 of the ZNF804A gene is strongly associated with schizophrenia and bipolar disorder. This variant has also been associated in some studies with a range of cognitive and neuro imaging phenotypes, but several studies have reported no effect on the same phenotypes in other samples. Here, we genotyped 670 healthy adult Norwegian subjects and 1753 healthy adult Swedish subjects for rs1344706, and tested for associations with cognitive phenotypes including general intellectual abilities, memory functions and cognitive inhibition. We also tested whether rs1344706 is associated with white matter microstructural properties using diffusion tensor imaging (DTI) data from 250 to 340 of the Norwegian and Swedish subjects, respectively. Whole-brain voxel-wise statistical modeling of the effect of the ZNF804A variant on two DTI indices, fractional anisotropy (FA) and radial diffusivity (RD), was performed using tract-based spatial statistics (TBSS), and commonly reported effect sizes were calculated within several large-scale white matter pathways based on neuroanatomic atlases. No significant associations were found between rs1344706 and the cognitive traits or white matter microstructure. We conclude that the rs1344706 SNP has no significant effect on these phenotypes in our two reasonably powered samples.
  •  
3.
  • Giddaluru, Sudheer, et al. (författare)
  • Genetics of structural connectivity and information processing in the brain
  • 2016
  • Ingår i: Brain Structure and Function. - 1863-2653 .- 1863-2661. ; 221:9, s. 4643-4661
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the genetic factors underlying brain structural connectivity is a major challenge in imaging genetics. Here, we present results from genome-wide association studies (GWASs) of whole-brain white matter (WM) fractional anisotropy (FA), an index of microstructural coherence measured using diffusion tensor imaging. Data from independent GWASs of 355 Swedish and 250 Norwegian healthy adults were integrated by meta-analysis to enhance power. Complementary GWASs on behavioral data reflecting processing speed, which is related to microstructural properties of WM pathways, were performed and integrated with WM FA results via multimodal analysis to identify shared genetic associations. One locus on chromosome 17 (rs145994492) showed genome-wide significant association with WM FA (meta P value = 1.87 × 10(-08)). Suggestive associations (Meta P value <1 × 10(-06)) were observed for 12 loci, including one containing ZFPM2 (lowest meta P value = 7.44 × 10(-08)). This locus was also implicated in multimodal analysis of WM FA and processing speed (lowest Fisher P value = 8.56 × 10(-07)). ZFPM2 is relevant in specification of corticothalamic neurons during brain development. Analysis of SNPs associated with processing speed revealed association with a locus that included SSPO (lowest meta P value = 4.37 × 10(-08)), which has been linked to commissural axon growth. An intergenic SNP (rs183854424) 14 kb downstream of CSMD1, which is implicated in schizophrenia, showed suggestive evidence of association in the WM FA meta-analysis (meta P value = 1.43 × 10(-07)) and the multimodal analysis (Fisher P value = 1 × 10(-07)). These findings provide novel data on the genetics of WM pathways and processing speed, and highlight a role of ZFPM2 and CSMD1 in information processing in the brain.
  •  
4.
  • Hibar, Derrek P., et al. (författare)
  • Common genetic variants influence human subcortical brain structures
  • 2015
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 520:7546, s. 224-U216
  • Tidskriftsartikel (refereegranskat)abstract
    • The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume(5) and intracranial volume(6). These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 X 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.
  •  
5.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
6.
  • Howe, Laurence J., et al. (författare)
  • Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects
  • 2022
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 54:5, s. 581-592
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects. Within-sibship genome-wide association analyses using data from 178,076 siblings illustrate differences between population-based and within-sibship GWAS estimates for phenotypes influenced by demographic and indirect genetic effects.
  •  
7.
  • Howe, Laurence J., et al. (författare)
  • Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects
  • 2022
  • Ingår i: Nature Genetics. - : NATURE PORTFOLIO. - 1061-4036 .- 1546-1718. ; 54:5, s. 581-
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects. Within-sibship genome-wide association analyses using data from 178,076 siblings illustrate differences between population-based and within-sibship GWAS estimates for phenotypes influenced by demographic and indirect genetic effects.
  •  
8.
  • Myrum, Craig, et al. (författare)
  • Common variants in the ARC gene are not associated withcognitive abilities
  • 2015
  • Ingår i: Brain and Behavior. - : John Wiley & Sons. - 2162-3279 .- 2162-3279. ; 5:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The Activity-Regulated Cytoskeleton-associated (ARC) gene encodes a protein that is critical for the consolidation of synaptic plasticity and long-term memory formation. Given ARC's key role in synaptic plasticity, we hypothesized that genetic variations in ARC may contribute to interindividual variability in human cognitive abilities or to attention-deficit hyperactivity disorder (ADHD) susceptibility, where cognitive impairment often accompanies the disorder. Methods: We tested whether ARC variants are associated with six measures of cognitive functioning in 670 healthy subjects in the Norwegian Cognitive NeuroGenetics (NCNG) by extracting data from its Genome-Wide Association Study (GWAS). In addition, the Swedish Betula sample of 1800 healthy subjects who underwent similar cognitive testing was also tested for association with 19 tag SNPs. Results: No ARC variants show association at the study-wide level, but several markers show a trend toward association with human cognitive functions. We also tested for association between ARCSNPs and ADHD in a Norwegian sample of cases and controls, but found no significant associations. Conclusion: This study suggests that common genetic variants located in ARC do not account for variance in human cognitive abilities, though small effects cannot be ruled out.
  •  
9.
  • Satizabal, Claudia L., et al. (författare)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
10.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy