SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gigante B) "

Sökning: WFRF:(Gigante B)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Justice, A. E., et al. (författare)
  • Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
  • 2017
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.
  •  
2.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
3.
  • Shungin, Dmitry, et al. (författare)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Tidskriftsartikel (refereegranskat)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
4.
  • Winkler, Thomas W, et al. (författare)
  • The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study.
  • 2015
  • Ingår i: PLoS Genetics. - : Public Library of Science. - 1553-7404 .- 1553-7390. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.
  •  
5.
  • Mahajan, Anubha, et al. (författare)
  • Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility
  • 2014
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 46:3, s. 234-234
  • Tidskriftsartikel (refereegranskat)abstract
    • To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.
  •  
6.
  •  
7.
  • Gaulton, Kyle J., et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci
  • 2015
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:12, s. 1415-
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
8.
  • Sung, Yun J., et al. (författare)
  • A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure
  • 2018
  • Ingår i: American Journal of Human Genetics. - : Cell Press. - 0002-9297 .- 1537-6605. ; 102:3, s. 375-400
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined similar to 18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 x 10(-8)) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 x 10(-8)). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling MSRA, EBF2).
  •  
9.
  • Randall, Joshua C., et al. (författare)
  • Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits
  • 2013
  • Ingår i: PLoS Genetics. - : Public Library of Science. - 1553-7404 .- 1553-7390. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5x10(-8)), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.
  •  
10.
  • Sung, Yun Ju, et al. (författare)
  • A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure
  • 2019
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 28:15, s. 2615-2633
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene–smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene–smoking interaction analysis and 38 were newly identified (P < 5 × 10−8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.
  •  
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (121)
konferensbidrag (37)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (119)
övrigt vetenskapligt (40)
Författare/redaktör
Gigante, B (161)
de Faire, U (117)
Leander, K (94)
Gigante, Bruna (60)
Hamsten, A (52)
de Faire, Ulf (46)
visa fler...
Tremoli, E (40)
Strawbridge, RJ (38)
Leander, Karin (37)
Baldassarre, D (36)
Rauramaa, R (34)
Hamsten, Anders (30)
Silveira, A. (29)
Humphries, SE (28)
Lind, L (27)
Wareham, Nicholas J (27)
Sennblad, B. (26)
Mohlke, Karen L (26)
Veglia, F (26)
Loos, Ruth J F (26)
Langenberg, C. (25)
Wareham, NJ (25)
McCarthy, Mark I (25)
Pedersen, Nancy L (25)
Vikstrom, M (25)
Watkins, H (25)
Franks, Paul W (24)
Lind, Lars (24)
Uitterlinden, Andre ... (24)
Hellénius, ML (24)
Boerwinkle, E (24)
Metspalu, A (24)
Peters, A (23)
Humphries, Steve E. (23)
Samani, Nilesh J. (23)
Gudnason, V (22)
Langenberg, Claudia (22)
Boehnke, M (22)
Laakso, M (22)
Barroso, Ines (22)
Esko, T (22)
Pedersen, NL (21)
Froguel, P (21)
Deloukas, P. (21)
Boerwinkle, Eric (21)
Boehnke, Michael (21)
Ingelsson, E (21)
Kuusisto, J. (21)
Metspalu, Andres (21)
Abecasis, Gonçalo R (21)
visa färre...
Lärosäte
Karolinska Institutet (121)
Uppsala universitet (37)
Lunds universitet (30)
Umeå universitet (20)
Göteborgs universitet (9)
Högskolan Dalarna (5)
visa fler...
Stockholms universitet (2)
Linköpings universitet (2)
Gymnastik- och idrottshögskolan (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (159)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (68)
Naturvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy