SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Glantz A) ;pers:(Glantz Maria)"

Sökning: WFRF:(Glantz A) > Glantz Maria

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andrén, Anders, et al. (författare)
  • The occurrence of noncoagulating milk and the association of bovine milk coagulation properties with genetic variants of the caseins in 3 Scandinavian dairy breeds
  • 2013
  • Ingår i: Journal of Dairy Science. - : American Dairy Science Association. - 1525-3198 .- 0022-0302. ; 96:8, s. 4830-4842
  • Tidskriftsartikel (refereegranskat)abstract
    • Substantial variation in milk coagulation properties has been observed among dairy cows. Consequently, raw milk from individual cows and breeds exhibits distinct coagulation capacities that potentially affect the technological properties and milk processing into cheese. This variation is largely influenced by protein composition, which is in turn affected by underlying genetic polymorphisms in the major milk proteins. In this study, we conducted a large screening on 3 major Scandinavian breeds to resolve the variation in milk coagulation traits and the frequency of milk with impaired coagulation properties (noncoagulation). In total, individual coagulation properties were measured on morning milk collected from 1,299 Danish Holstein (DH), Danish Jersey (DJ), and Swedish Red (SR) cows. The 3 breeds demonstrated notable interbreed differences in coagulation properties, with DJ cows exhibiting superior coagulation compared with the other 2 breeds. In addition, milk samples from 2% of DH and 16% of SR cows were classified as noncoagulating. Furthermore, the cows were genotyped for major genetic variants in the alpha(S1)- (CSN1S1), beta- (CSN2), and kappa-casein (CSN3) genes, revealing distinct differences in variant frequencies among breeds. Allele I of CSN2, which had not formerly been screened in such a high number of cows in these Scandinavian breeds, showed a frequency around 7% in DH and DJ, but was not detected in SR. Genetic polymorphisms were significantly associated with curd firming rate and rennet coagulation time. Thus, CSN1S1 C, CSN2 B, and CSN3 B positively affected milk coagulation, whereas CSN2 A(2), in particular, had a negative effect. In addition to the influence of individual casein genes, the effects of CSN1S1-CSN2-CSN3 composite genotypes were also examined, and revealed strong associations in all breeds, which more or less reflected the single gene results. Overall, milk coagulation is under the influence of additive genetic variation. Optimal milk for future cheese production can be ensured by monitoring the frequency of unfavorable variants and thus preventing an increase in the number of cows producing milk with impaired coagulation. Selective breeding for variants associated with superior milk coagulation can potentially increase raw milk quality and cheese yield in all 3 Scandinavian breeds.
  •  
2.
  • Gustavsson, Frida, et al. (författare)
  • Effects of breed and casein genetic variants on protein profile in milk from Swedish Red, Danish Holstein, and Danish Jersey cows.
  • 2014
  • Ingår i: Journal of Dairy Science. - : American Dairy Science Association. - 1525-3198 .- 0022-0302. ; 97:6, s. 3866-3877
  • Tidskriftsartikel (refereegranskat)abstract
    • In selecting cows for higher milk yields and milk quality, it is important to understand how these traits are affected by the bovine genome. The major milk proteins exhibit genetic polymorphism and these genetic variants can serve as markers for milk composition, milk production traits, and technological properties of milk. The aim of this study was to investigate the relationships between casein (CN) genetic variants and detailed protein composition in Swedish and Danish dairy milk. Milk and DNA samples were collected from approximately 400 individual cows each of 3 Scandinavian dairy breeds: Swedish Red (SR), Danish Holstein (DH), and Danish Jersey (DJ). The protein profile with relative concentrations of α-lactalbumin, β-lactoglobulin, and αS1-, αS2-, κ-, and β-CN was determined for each milk sample using capillary zone electrophoresis. The genetic variants of the αS1- (CSN1S1), β- (CSN2), and κ-CN (CSN3) genes for each cow were determined using TaqMan SNP genotyping assays (Applied Biosystems, Foster City, CA). Univariate statistical models were used to evaluate the effects of composite genetic variants, αS1-β-κ-CN, on the protein profile. The 3 studied Scandinavian breeds differed from each other regarding CN genotypes, with DH and SR having similar genotype frequencies, whereas the genotype frequencies in DJ differed from the other 2 breeds. The similarities in genotype frequencies of SR and DH and differences compared with DJ were also seen in milk production traits, gross milk composition, and protein profile. Frequencies of the most common composite αS1-β-κ-CN genotype BB/A(2)A(2)/AA were 30% in DH and 15% in SR, and cows that had this genotype gave milk with lower relative concentrations of κ- and β-CN and higher relative concentrations of αS-CN, than the majority of the other composite genotypes in SR and DH. The effect of composite genotypes on relative concentrations of the milk proteins was not as pronounced in DJ. The present work suggests that a higher frequency of BB/A(1)A(2)/AB, together with a decrease in BB/A(2)A(2)/AA, could have positive effects on DH and SR milk regarding, for example, the processing of cheese.
  •  
3.
  • Gustavsson, Frida, et al. (författare)
  • Impact of genetic variants of milk proteins on chymosin-induced gelation properties of milk from individual cows of Swedish Red dairy cattle
  • 2014
  • Ingår i: International Dairy Journal. - : Elsevier BV. - 0958-6946 .- 1879-0143. ; 39:1, s. 102-107
  • Tidskriftsartikel (refereegranskat)abstract
    • Chymosin-induced gelation properties of the milk of around 400 Swedish Red dairy cows was investigated with the aim of identifying genetic protein variants that influence chymosin-induced gelation for optimisation of cheese milk through breeding practices. The variation in chymosin-induced gelation properties was shown to be large in the milk of Swedish Red and there was a high frequency of cows producing non-coagulating milk, 18%. The present study showed that the common composite beta-kappa-casein genotypes A(1)A(2)/AE and A(2)A(2)/AA were associated with both poor gelation properties and non-coagulation in the milk of Swedish Red. The present study suggests that if the frequencies of composite genotypes A(1)A(2)/AE and A(2)A(2)/AA were decreased in the Swedish Red population in favour for A(1)A(1)/AA and A(1)A(1)/AE, this could have a positive effect on the rennetability of the milk. (C) 2014 Elsevier Ltd. All rights reserved.
  •  
4.
  • Glantz, Maria, et al. (författare)
  • Effects of animal selection on milk composition and processability.
  • 2009
  • Ingår i: Journal of Dairy Science. - : American Dairy Science Association. - 1525-3198 .- 0022-0302. ; 92:9, s. 4589-4603
  • Tidskriftsartikel (refereegranskat)abstract
    • One goal of animal breeding is to increase the economic output through increased production, improved milk quality, and cow health. The objective of this study was to evaluate genetic progress in relation to milk composition, processability, and yield as a correlated response to selection for the Swedish breeding objective. Dairy cows with high genetic merit, classified as elite dairy cows, of the Swedish Red and Swedish Holstein breeds were used. Milk samples were collected on the farm level in winter and summer from a research herd at Nötcenter Viken, a bovine research farm in Sweden. Comparisons were made with milk from a Swedish Red herd, a Swedish Holstein herd, and a Swedish dairy processor in the same geographical area. Protein, lipid, and carbohydrate profiles as well as minerals were analyzed, and technological properties, including rennet-induced gelation characteristics, lipid oxidation, total antioxidant capacity, and fat globule size, were determined. Higher yields were found for elite cows for components of the protein, lipid, and carbohydrate profiles as well as for minerals, implying genetic progress in relation to milk yield; however, the content of some milk components (e.g., lipid and whey protein contents) had decreased on average. Milk from the elite cows had good gelation characteristics, but was more susceptible to lipid autooxidation and had a lower total antioxidant capacity. These results demonstrate that milk composition and processing characteristics could be used to adjust breeding practices to optimize the quality and stability of milk and dairy products.
  •  
5.
  • Gregersen, V R, et al. (författare)
  • Bovine chromosomal regions affecting rheological traits in rennet-induced skim milk gels.
  • 2015
  • Ingår i: Journal of Dairy Science. - : American Dairy Science Association. - 1525-3198 .- 0022-0302. ; 98:2, s. 1261-1272
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimizing cheese yield and quality is of central importance to cheese manufacturing. The yield is associated with the time it takes before the gel has an optimal consistency for further processing, and it is well known that gel formation differs between individual milk samples. By identifying genomic regions affecting traits related to rennet-induced gelation, the aim of this study was to identify potential candidate genes affecting these traits. Hence, rennet-induced gelation, including rennet coagulation time, gel strength, and yield stress, was measured in skim milk samples collected from 379 animals of the Swedish Red breed using low-amplitude oscillation measurements. All animals had genotypes for almost 621,000 segregating single nucleotide polymorphisms (SNP), identified using the Bovine HD SNPChip (Illumina Inc., San Diego, CA). The genome was scanned for associations, haplotypes based on SNP sets comprising highly associated SNP were inferred, and the effects of the 2 most common haplotypes within each region were analyzed using mixed models. Even though the number of animals was relatively small, a total of 21 regions were identified, with 4 regions showing association with more than one trait. A major quantitative trait locus for all traits was identified around the casein cluster explaining between 9.3 to 15.2% of the phenotypic variation of the different traits. In addition, 3 other possible candidate genes were identified; that is, UDP-n-acetyl-α-d-galactosamine:polypeptide n-acetylgalactosaminyl-transferase 1 (GALNT1), playing a role in O-glycosylation of κ-casein, and 2 cathepsins, CTSZ and CTSC, possibly involved in proteolysis of milk proteins. We have shown that other genes than the casein genes themselves may be involved in the regulation of gelation traits. However, additional analysis is needed to confirm these results. To our knowledge, this is the first study identifying quantitative trait loci affecting rennet-induced gelation of skim milk through a high-density genome-wide association study.
  •  
6.
  • Gustavsson, Frida, et al. (författare)
  • Factors influencing chymosin-induced gelation of milk from individual dairy cows: Major effects of casein micelle size and calcium
  • 2014
  • Ingår i: International Dairy Journal. - : Elsevier BV. - 0958-6946 .- 1879-0143. ; 39:1, s. 201-208
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimisation of cheese yield is crucial for cheese production; a previous study showed large variations in chymosin-induced coagulation in milk from the second most common Swedish dairy breed, Swedish Red. In the present study, the effect of gross composition, protein composition, total and ionic calcium content, phosphorous content and casein micelle size on chymosin-induced gelation was determined in milk from 98 Swedish Red cows. The study showed that protein content and total calcium content, ionic calcium concentration and casein micelle size were the most important factors explaining the variation of gelation properties in this sample set. Non-coagulating milk was suggested to have lower ionic and total calcium content as well as lower relative concentrations of beta-lactoglobulin than coagulating milk. The lower total calcium content in non-coagulating milk poses a problem as the difference was, theoretically, four times larger than the amount of calcium that is normally added in cheese processing. (C) 2014 Elsevier Ltd. All rights reserved.
  •  
7.
  • Gustavsson, Frida, et al. (författare)
  • Genetic parameters for rennet- and acid-induced coagulation properties in milk from Swedish Red dairy cows.
  • 2014
  • Ingår i: Journal of Dairy Science. - : American Dairy Science Association. - 1525-3198 .- 0022-0302. ; 97:8, s. 5219-5229
  • Tidskriftsartikel (refereegranskat)abstract
    • Milk coagulation is an important processing trait, being the basis for production of both cheese and fermented products. There is interest in including technological properties of these products in the breeding goal for dairy cattle. The aim of the present study was therefore to estimate genetic parameters for milk coagulation properties, including both rennet- and acid-induced coagulation, in Swedish Red dairy cattle using genomic relationships. Morning milk samples and blood samples were collected from 395 Swedish Red cows that were selected to be as genetically unrelated as possible. Using a rheometer, milk samples were analyzed for rennet- and acid-induced coagulation properties, including gel strength (G'), coagulation time, and yield stress (YS). In addition to the technological traits, milk composition was analyzed. A binary trait was created to reflect that milk samples that had not coagulated 40 min after rennet addition were considered noncoagulating milk. The cows were genotyped by using the Illumina BovineHD BeadChip (Illumina Inc., San Diego, CA). Almost 600,000 markers remained after quality control and were used to construct a matrix of genomic relationships among the cows. Multivariate models including fixed effects of herd, lactation stage, and parity were fitted using the ASReml software to obtain estimates of heritabilities and genetic and phenotypic correlations. Heritability estimates (h(2)) for G' and YS in rennet and acid gels were found to be high (h(2) = 0.38-0.62) and the genetic correlations between rennet-induced and acid-induced coagulation properties were weak but favorable, with the exception of YSrennet with G'acid and YSacid, both of which were strong. The high heritability (h(2) = 0.45) for milk coagulating ability expressed as a binary trait suggests that noncoagulation could be eliminated through breeding. Additionally, the results indicated that the current breeding objective could increase the frequency of noncoagulating milk and lead to deterioration of acid-induced coagulation through unfavorable genetic associations with protein content (0.38) and milk yield (-0.61 to -0.71), respectively. The outcome of this study suggests that by including more detailed compositional traits genetically associated with milk coagulation or by including milk coagulation properties directly within the breeding goal, it appears possible to breed cows that produce milk better suited for production of cheese and fermented products.
  •  
8.
  • Poulsen, Nina A, et al. (författare)
  • Comparison of milk protein composition and rennet coagulation properties in native Swedish dairy cow breeds and high-yielding Swedish Red cows
  • 2017
  • Ingår i: Journal of Dairy Science. - : American Dairy Science Association. - 0022-0302. ; 100:11, s. 8722-8734
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have reported a very high frequency of noncoagulating milk in Swedish Red cows. The underlying factors are not fully understood. In this study, we explored rennet-induced coagulation properties and relative protein profiles in milk from native Swedish Mountain and Swedish Red Polled cows and compared them with a subset of noncoagulating (NC) and well-coagulating (WC) milk samples from modern Swedish Red cows. The native breeds displayed a very low prevalence of NC milk and superior milk coagulation properties compared with Swedish Red cows. The predominant variants in both native breeds were αS1-casein (αS1-CN) B, β-CN A2 and β-lactoglobulin (β-LG) B. For κ-CN, the B variant was predominant in the Swedish Mountain cows, whereas the A variant was the most frequent in the Swedish Red Polled. The native breeds displayed similar protein composition, but varied in content of αS1-CN with 9 phosphorylated serines (9P) form. Within the Swedish Mountain cows, we observed a strong inverse correlation between the relative concentration of κ-CN and micelle size and a positive correlation between ionic calcium and gel firmness. For comparison, we investigated a subset of 29 NC and 28 WC milk samples, representing the extremes with regard to coagulation properties based on an initial screening of 395 Swedish Red cows. In Swedish Red, NC milk properties were found to be related to higher frequencies of β-CN A2, κ-CN E and A variants, as well as β-LG B, and the predominant composite genotype of β- and κ-CN in the NC group was A2A2/AA. Generally, the A2A2/AA composite genotype was related to lower relative concentrations of κ-CN isoforms and higher relative concentrations of αS1-, αS2-, and β-CN. Compared with the group of WC milk samples, NC milk contained a higher fraction of αS2-CN and α-lactalbumin (α-LA) but a lower fraction of αS1-CN 9P. In conclusion, milk from native Swedish breeds has good characteristics for cheese milk, which could be exploited in niche dairy products. In milk from Swedish Mountain cows, levels of ionic calcium seemed to be more important for rennet-induced gel firmness than variation in the relative protein profile. In Swedish Red, lower protein content as well as higher fraction of αS2-CN and lower fraction of αS1-CN 9P were related to NC milk. Further, a decrease in the frequency of the composite β-κ-CN genotype A2A2/AA through selective breeding could have a positive effect on milk coagulation properties.
  •  
9.
  • Poulsen, N. A., et al. (författare)
  • The influence of feed and herd on fatty acid composition in 3 dairy breeds (Danish Holstein, Danish Jersey, and Swedish Red)
  • 2012
  • Ingår i: Journal of Dairy Science. - : American Dairy Science Association. - 1525-3198 .- 0022-0302. ; 95:11, s. 6362-6371
  • Tidskriftsartikel (refereegranskat)abstract
    • The composition of milk fat from dairy cows is related to both genetic and environmental factors. Here, the effect of feed and herd was examined in 3 Scandinavian breeds, namely Danish Holstein-Friesian (DH), Danish Jersey (DJ), and Swedish Red (SR). In total, milk samples from 1,298 cows kept in indoor housing systems were collected from 61 conventional dairy herds in Denmark and Sweden. The fatty acid (FA) composition of milk was determined by gas chromatography and the content of alpha-tocopherol by HPLC. Based on the 17 individual FA determined, distinct FA profiles were observed for all breeds using univariate and multivariate statistics. The DJ cows were characterized by higher levels of saturated short-chain FA; in contrast, DH cows had higher content of unsaturated C18 FA, whereas higher levels of primarily C14:0, C14:1, C18:1 cis-9, and C18:3n-3 were evident in SR cows. This variation in milk fat composition across breeds was further reflected in different desaturase indices, which were generally higher in SR cows. In addition, alpha-tocopherol differed significantly among breeds, with DJ cows having the highest content. Herd-specific feeding plans were collected, and different feed items were separated into 4 broad feed categories, including grass products, maize silage, grain, and concentrate. The pronounced differences in overall feed composition among breeds were, to a large extent, due to regional differences between countries, with SR receiving higher levels of grain and grass silage compared with the Danish breeds. Within breeds, differences in feeding regimens among herds were furthermore higher in SR. Significant correlations between feed category and individual FA were observed in all breeds. Furthermore, variance components were estimated and used to determine the proportion of phenotypic variation that could be explained by herd. The herd effect for individual FA was generally lower for DH compared with the 2 other breeds. In addition, very low herd effects were shown for C14:1 and C16:1 in all breeds, suggesting that the content of these FA is mainly genetically regulated.
  •  
10.
  • Sheng, Bulei, et al. (författare)
  • Effects of genetic variants and sialylation on in vitro digestibility of purified κ-casein
  • 2022
  • Ingår i: Journal of Dairy Science. - : American Dairy Science Association. - 0022-0302. ; 105:4, s. 2803-2814
  • Tidskriftsartikel (refereegranskat)abstract
    • Milk with different κ-casein (CN) phenotypes has previously been found to influence its gastric digestion rate. Therefore, the aim of the present study is to disentangle contributions of genetic variation and its related sialylation on the in vitro digestion process of κ-CN. Accordingly, κ-CN was purified from milk representing homozygous cows with κ-CN phenotypes AA, BB, or EE and used as substrate molecules in model studies using the INFOGEST 2.0 in vitro static digestion model. Furthermore, the effect of removal of the terminal sialic acids present on the O-linked oligosaccharides of the purified κ-CN A, B, and E protein variants were studied by desialylation enzymatic assays. The κ-CN proteins were purified by reducing anion exchange chromatography with purities of variants A, B, and E of 93.0, 97.1, and 90.0%, respectively. Protein degradations of native and desialylated κ-CN isolates in gastric and intestinal phases were investigated by sodium dodecyl sulfate-PAGE, degree of hydrolysis (DH), and liquid chromatography electrospray ionization mass spectrometry. It was shown that after purification, the κ-CN molecules reassembled into multimer states, which then constituted the basis for the digestion studies. As assessed by DH, purified variants A and E were found to exhibit faster in vitro digestion rates in both gastric and intestinal phases compared with variant B. Desialylation increased both gastric and intestinal digestion rates for all variants, as measured by DH. In the gastric phase, desialylation promoted digestion of variant B at a rate comparable with native variants A and E, whereas in the intestinal phase, desialylation of variant B promoted better digestion than native A or E. Taken together, the results confirm that low glycosylation degree of purified κ-CN promotes faster in vitro digestion rates, and that desialylation of the O-linked oligosaccharides further promotes digestion. This finding could be applied to produce dairy products with enhanced digestibility.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy