SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Glantz A) ;pers:(Seland O.)"

Sökning: WFRF:(Glantz A) > Seland O.

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Struthers, Hamish, et al. (författare)
  • Climate-induced changes in sea salt aerosol number emissions : 1870 to 2100
  • 2013
  • Ingår i: Journal of Geophysical Research-Atmospheres. - : American Geophysical Union (AGU). - 2169-897X. ; 118:2, s. 670-682
  • Tidskriftsartikel (refereegranskat)abstract
    • Global climate model output is combined with an emission parameterization to estimate the change in the global and regional sea salt aerosol number emission from 1870 to 2100. Global average results suggest a general increase in sea salt aerosol number emission due to increasing surface wind speed. However, the emission changes are not uniform over the aerosol size spectrum due to an increase in sea surface temperature. From 1870 to 2100 the emission of coarse mode particles (dry diameter D-P > 655 nm) increase by approximately 10 % (global average), whereas no significant change in the emission of ultrafine mode aerosols (dry diameter D-p < 76 nm) was found over the same period. Significant regional differences in the number emission trends were also found. Based on CAM-Oslo global climate model output, no straight-forward relationship was found between the change in the number emissions and changes in the sea salt aerosol burden or optical thickness. This is attributed to a change in the simulated residence time of the sea salt aerosol. For the 21st century, a decrease in the residence time leads to a weaker sea salt aerosol-climate feedback that what would be inferred based on changes in number emissions alone. Finally, quantifying any potential impact on marine stratocumulus cloud microphysical and radiative properties due to changes in sea salt aerosol number emissions is likely to be complicated by commensurate changes in anthropogenic aerosol emissions and changes in meteorology.
  •  
2.
  • Struthers, Hamish, et al. (författare)
  • The effect of sea ice loss on sea salt aerosol concentrations and the = diative balance in the Arctic
  • 2011
  • Ingår i: ATMOSPHERIC CHEMISTRY AND PHYSICS. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:7, s. 3459-3477
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding Arctic climate change requires knowledge of both the external and the local drivers of Arctic climate as well as local feedbacks within the system. An Arctic feedback mechanism relating changes in sea ice extent to an alteration of the emission of sea salt aerosol and the consequent change in radiative balance is examined. A set of idealized climate model simulations were performed to quantify the radiative effects of changes in sea salt aerosol emissions induced by prescribed changes in sea ice extent. The model was forced using sea ice concentrations consistent with present day conditions and projections of sea ice extent for 2100. Sea salt aerosol emissions increase in response to a decrease in sea ice, the model results showing an annual average increase in number emission over the polar cap (70-90 degrees N) of 86 x 10(6) m(-2) s(-1) (mass emission increase of 23 mu g m(-2) s(-1)). This in turn leads to an increase in the natural aerosol optical depth of approximately 23%. In response to changes in aerosol optical depth, the natural component of the aerosol direct forcing over the Arctic polar cap is estimated to be between -0.2 and -0.4 W M(-2) for the summer months, which results in a negative feedback on the system. The model predicts that the change in first indirect aerosol effect (cloud albedo effect) is approximately a factor of ten greater than the change in direct aerosol forcing although this result is highly uncertain due to the crude representation of Arctic clouds and aerosol-cloud interactions in the model. This study shows that both the natural aerosol direct and first indirect effects are strongly dependent on the surface albedo, highlighting the strong coupling between sea ice, aerosols, Arctic clouds and their radiative effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy