SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Grabherr Manfred) ;pers:(Jern Patric)"

Search: WFRF:(Grabherr Manfred) > Jern Patric

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Delhomme, Nicolas, et al. (author)
  • Serendipitous Meta-Transcriptomics : The Fungal Community of Norway Spruce (Picea abies)
  • 2015
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:9
  • Journal article (peer-reviewed)abstract
    • After performing de novo transcript assembly of >1 billion RNA-Sequencing reads obtained from 22 samples of different Norway spruce (Picea abies) tissues that were not surface sterilized, we found that assembled sequences captured a mix of plant, lichen, and fungal transcripts. The latter were likely expressed by endophytic and epiphytic symbionts, indicating that these organisms were present, alive, and metabolically active. Here, we show that these serendipitously sequenced transcripts need not be considered merely as contamination, as is common, but that they provide insight into the plant's phyllosphere. Notably, we could classify these transcripts as originating predominantly from Dothideomycetes and Leotiomycetes species, with functional annotation of gene families indicating active growth and metabolism, with particular regards to glucose intake and processing, as well as gene regulation.
  •  
2.
  • Hayward, Alexander, et al. (author)
  • Broad-scale phylogenomics provides insights into retrovirus–host evolution
  • 2013
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:50, s. 20146-20151
  • Journal article (peer-reviewed)abstract
    • Genomic data provide an excellent resource to improve understanding of retrovirus evolution and the complex relationships among viruses and their hosts. In conjunction with broad-scale in silico screening of vertebrate genomes, this resource offers an opportunity to complement data on the evolution and frequency of past retroviral spread and so evaluate future risks and limitations for horizontal transmission between different host species. Here, we develop a methodology for extracting phylogenetic signal from large endogenous retrovirus (ERV) datasets by collapsing information to facilitate broad-scale phylogenomics across a wide sample of hosts. Starting with nearly 90,000 ERVs from 60 vertebrate host genomes, we construct phylogenetic hypotheses and draw inferences regarding the designation, host distribution, origin, and transmission of the Gammaretrovirus genus and associated class I ERVs. Our results uncover remarkable depths in retroviral sequence diversity, supported within a phylogenetic context. This finding suggests that current infectious exogenous retrovirus diversity may be underestimated, adding credence to the possibility that many additional exogenous retroviruses may remain to be discovered in vertebrate taxa. We demonstrate a history of frequent horizontal interorder transmissions from a rodent reservoir and suggest that rats may have acted as important overlooked facilitators of gammaretrovirus spread across diverse mammalian hosts. Together, these results demonstrate the promise of the methodology used here to analyze large ERV datasets and improve understanding of retroviral evolution and diversity for utilization in wider applications.
  •  
3.
  • Zamani, Neda, et al. (author)
  • Unsupervised genome-wide recognition of local relationship patterns
  • 2013
  • In: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 14, s. 347-
  • Journal article (peer-reviewed)abstract
    • BACKGROUNDPhenomena such as incomplete lineage sorting, horizontal gene transfer, gene duplication and subsequent sub- and neo-functionalisation can result in distinct local phylogenetic relationships that are discordant with species phylogeny. In order to assess the possible biological roles for these subdivisions, they must first be identified and characterised, preferably on a large scale and in an automated fashion.RESULTSWe developed Saguaro, a combination of a Hidden Markov Model (HMM) and a Self Organising Map (SOM), to characterise local phylogenetic relationships among aligned sequences using cacti, matrices of pair-wise distance measures. While the HMM determines the genomic boundaries from aligned sequences, the SOM hypothesises new cacti in an unsupervised and iterative fashion based on the regions that were modelled least well by existing cacti. After testing the software on simulated data, we demonstrate the utility of Saguaro by testing two different data sets: (i) 181 Dengue virus strains, and (ii) 5 primate genomes. Saguaro identifies regions under lineage-specific constraint for the first set, and genomic segments that we attribute to incomplete lineage sorting in the second dataset. Intriguingly for the primate data, Saguaro also classified an additional ~3% of the genome as most incompatible with the expected species phylogeny. A substantial fraction of these regions was found to overlap genes associated with both the innate and adaptive immune systems.CONCLUSIONSSaguaro detects distinct cacti describing local phylogenetic relationships without requiring any a priori hypotheses. We have successfully demonstrated Saguaro's utility with two contrasting data sets, one containing many members with short sequences (Dengue viral strains: n = 181, genome size = 10,700 nt), and the other with few members but complex genomes (related primate species: n = 5, genome size = 3 Gb), suggesting that the software is applicable to a wide variety of experimental populations. Saguaro is written in C++, runs on the Linux operating system, and can be downloaded from http://saguarogw.sourceforge.net/.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view