SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Green Robert C.) ;lar1:(umu)"

Sökning: WFRF:(Green Robert C.) > Umeå universitet

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Docherty, Anna R, et al. (författare)
  • GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors.
  • 2023
  • Ingår i: The American journal of psychiatry. - : American Psychiatric Association Publishing. - 1535-7228 .- 0002-953X. ; 180:10, s. 723-738
  • Tidskriftsartikel (refereegranskat)abstract
    • Suicidal behavior is heritable and is a major cause of death worldwide. Two large-scale genome-wide association studies (GWASs) recently discovered and cross-validated genome-wide significant (GWS) loci for suicide attempt (SA). The present study leveraged the genetic cohorts from both studies to conduct the largest GWAS meta-analysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures.This study comprised 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed-effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian randomization with brain expression quantitative trait loci data, phenome-wide genetic correlation, and genetic causal proportion analyses.Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p values <5×10-8. These loci were mostly intergenic and implicated DRD2, SLC6A9, FURIN, NLGN1, SOX5, PDE4B, and CACNG2. The multi-ancestry SNP-based heritability estimate of SA was 5.7% on the liability scale (SE=0.003, p=5.7×10-80). Significant brain tissue gene expression and drug set enrichment were observed. There was shared genetic variation of SA with attention deficit hyperactivity disorder, smoking, and risk tolerance after conditioning SA on both major depressive disorder and posttraumatic stress disorder. Genetic causal proportion analyses implicated shared genetic risk for specific health factors.This multi-ancestry analysis of suicide attempt identified several loci contributing to risk and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across ancestry admixture populations, in veteran and civilian populations, and in attempt versus death.
  •  
5.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
6.
  • Mullins, Niamh, et al. (författare)
  • Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
  • 2022
  • Ingår i: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 91:3, s. 313-327
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders.METHODS: We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors.RESULTS: Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged.CONCLUSIONS: Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.
  •  
7.
  • Palmer, Nicholette D, et al. (författare)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • Ingår i: PloS one. - San Francisco : Public Library of Science (PLoS). - 1932-6203. ; 7:1, s. e29202-
  • Tidskriftsartikel (refereegranskat)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
  •  
8.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
9.
  • Thomas, H. J. D., et al. (författare)
  • Global plant trait relationships extend to the climatic extremes of the tundra biome
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
  •  
10.
  • Satizabal, Claudia L., et al. (författare)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
Typ av publikation
tidskriftsartikel (19)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Boehnke, Michael (7)
Nilsson, Peter (5)
Tuomi, Tiinamaija (5)
Groop, Leif (5)
Agartz, Ingrid (5)
Andreassen, Ole A (5)
visa fler...
Salomaa, Veikko (5)
Lind, Lars (5)
Wareham, Nicholas J. (5)
Kuusisto, Johanna (5)
Laakso, Markku (5)
McCarthy, Mark I (5)
Grarup, Niels (5)
Pedersen, Oluf (5)
Hansen, Torben (5)
Hu, Frank B. (5)
Langenberg, Claudia (5)
Mohlke, Karen L (5)
Qi, Lu (5)
Tuomilehto, Jaakko (5)
Gieger, Christian (5)
Barroso, Ines (5)
Hattersley, Andrew T (5)
Froguel, Philippe (5)
Gloyn, Anna L (5)
Altshuler, David (5)
Thorand, Barbara (5)
Morris, Andrew D (5)
Zeggini, Eleftheria (5)
Dupuis, Josée (5)
Illig, Thomas (5)
Meigs, James B. (5)
Penninx, Brenda W J ... (5)
Prokopenko, Inga (5)
Medland, Sarah E (5)
Frayling, Timothy M (5)
Esko, Tõnu (5)
Grabe, Hans J. (5)
Cheng, Ching-Yu (5)
Jackson, Anne U. (5)
Bonnycastle, Lori L. (5)
Chines, Peter S. (5)
Collins, Francis S. (5)
Grallert, Harald (5)
Lindgren, Cecilia M. (5)
Morris, Andrew P. (5)
Florez, Jose C. (5)
Ophoff, Roel A (5)
Roden, Michael (5)
Perry, John R.B. (5)
visa färre...
Lärosäte
Lunds universitet (10)
Karolinska Institutet (10)
Uppsala universitet (7)
Göteborgs universitet (6)
Sveriges Lantbruksuniversitet (6)
visa fler...
Stockholms universitet (3)
Linköpings universitet (2)
visa färre...
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)
Naturvetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy