SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grinberg Daniel) ;pers:(Vilageliu Lluïsa)"

Sökning: WFRF:(Grinberg Daniel) > Vilageliu Lluïsa

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benetó, Noelia, et al. (författare)
  • Generation of two compound heterozygous HGSNAT-mutated lines from healthy induced pluripotent stem cells using CRISPR/Cas9 to model Sanfilippo C syndrome
  • 2019
  • Ingår i: Stem Cell Research. - : Elsevier BV. - 1876-7753 .- 1873-5061. ; 41
  • Tidskriftsartikel (refereegranskat)abstract
    • Sanfilippo C syndrome (Mucopolysaccharidosis IIIC) is a rare lysosomal storage disorder caused by mutations in the HGSNAT gene. It is characterized by a progressive and severe neurodegeneration, for which there is no treatment available. Here, we report the generation of two HGSNAT-mutated cell lines from a healthy human induced pluripotent stem cell (hiPSC) line using CRISPR/Cas9 editing. These novel cell lines have a normal karyotype, express pluripotency specific markers and have the capability to differentiate into all three germ layers in vitro. These hiPSC lines will be useful for the generation of in vitro models of Sanfilippo C syndrome.
  •  
2.
  •  
3.
  • Benetó, Noelia, et al. (författare)
  • Genome Editing Using Cas9-gRNA Ribonucleoprotein in Human Pluripotent Stem Cells for Disease Modeling
  • 2022
  • Ingår i: Methods in Molecular Biology. - New York, NY : Springer US. - 1940-6029 .- 1064-3745. ; 2549, s. 409-425
  • Bokkapitel (refereegranskat)abstract
    • The discovery that the CRISPR/Cas9 system could be used for genome editing purposes represented a major breakthrough in the field. This advancement has notably facilitated the introduction or correction of disease-specific mutations in healthy or disease stem cell lines respectively; therefore, easing disease modeling studies in combination with differentiation protocols. For many years, variability in the genetic background of different stem cell lines has been a major burden to specifically identify phenotypes arising uniquely from the presence of the mutation and not from differences in other genomic regions. Here, we provide a complete protocol to introduce random indels in human wild type pluripotent stem cells using CRISPR/Cas9 in order to generate clonal lines with potential pathogenic alterations in any gene of interest. In this protocol, we use transfection of a ribonucleoprotein complex to diminish the risk of off-target effects, and select clonal lines with promising indels to obtain disease induced pluripotent stem cell lines.
  •  
4.
  • Benetó, Noelia, et al. (författare)
  • Neuronal and Astrocytic Differentiation from Sanfilippo C Syndrome iPSCs for Disease Modeling and Drug Development
  • 2020
  • Ingår i: Journal of Clinical Medicine. - : MDPI AG. - 2077-0383. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Sanfilippo syndrome type C (mucopolysaccharidosis IIIC) is an early-onset neurodegenerative lysosomal storage disorder, which is currently untreatable. The vast majority of studies focusing on disease mechanisms of Sanfilippo syndrome were performed on non-neural cells or mouse models, which present obvious limitations. Induced pluripotent stem cells (iPSCs) are an efficient way to model human diseases in vitro. Recently developed transcription factor-based differentiation protocols allow fast and efficient conversion of iPSCs into the cell type of interest. By applying these protocols, we have generated new neuronal and astrocytic models of Sanfilippo syndrome using our previously established disease iPSC lines. Moreover, our neuronal model exhibits disease-specific molecular phenotypes, such as increase in lysosomes and heparan sulfate. Lastly, we tested an experimental, siRNA-based treatment previously shown to be successful in patients' fibroblasts and demonstrated its lack of efficacy in neurons. Our findings highlight the need to use relevant human cellular models to test therapeutic interventions and shows the applicability of our neuronal and astrocytic models of Sanfilippo syndrome for future studies on disease mechanisms and drug development.
  •  
5.
  • Benetó, Noelia, et al. (författare)
  • Sanfilippo syndrome : Molecular basis, disease models and therapeutic approaches
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 21:21
  • Forskningsöversikt (refereegranskat)abstract
    • Sanfilippo syndrome or mucopolysaccharidosis III is a lysosomal storage disorder caused by mutations in genes responsible for the degradation of heparan sulfate, a glycosaminoglycan located in the extracellular membrane. Undegraded heparan sulfate molecules accumulate within lysosomes leading to cellular dysfunction and pathology in several organs, with severe central nervous system degeneration as the main phenotypical feature. The exact molecular and cellular mechanisms by which impaired degradation and storage lead to cellular dysfunction and neuronal degeneration are still not fully understood. Here, we compile the knowledge on this issue and review all available animal and cellular models that can be used to contribute to increase our understanding of Sanfilippo syndrome disease mechanisms. Moreover, we provide an update in advances regarding the different and most successful therapeutic approaches that are currently under study to treat Sanfilippo syndrome patients and discuss the potential of new tools such as induced pluripotent stem cells to be used for disease modeling and therapy development.
  •  
6.
  • Serra-Vinardell, Jenny, et al. (författare)
  • Selective chaperone effect of aminocyclitol derivatives on G202R and other mutant glucocerebrosidases causing Gaucher disease
  • 2014
  • Ingår i: International Journal of Biochemistry and Cell Biology. - : Elsevier BV. - 1357-2725 .- 1878-5875. ; 54, s. 245-254
  • Tidskriftsartikel (refereegranskat)abstract
    • Gaucher disease is an autosomal recessive lysosomal disorder characterized by the accumulation of glucosylceramide as a result of a deficiency of the enzyme glucocerebrosidase. Several competitive glucocerebrosidase inhibitors are able to act as pharmacological chaperones for an efficient rescue of the mutated, misfolded forms of the enzyme. Along this line, we report in this work on the ability of several aminocyclitols to increase the residual glucocerebrosidase activity in patient fibroblasts with different genotypes. Some of the compounds were slightly active on fibroblasts bearing some mutations, including the highly prevalent N370S mutation. All compounds were highly active as enzyme activity enhancers on fibroblasts from Gaucher disease patients containing the G202R mutation. Moreover, using the novel tagged sphingolipid omega-azidosphingosine, a reduction in the tagged glucosylceramide accumulation was also observed for selected aminocyclitols. Attempts to explain the activity impairment observed in glucocerebrosidase bearing the G202R mutation by comparative molecular dynamic studies on wild type and the G202R mutated proteins (free and isofagomine-bound, in both cases) were unsuccessful. Under the simulation conditions used, no clear effect of the G202R mutation neither over the global structure of the protein nor on the loops that constitute the glucocerebrosidase active site was observed. Since the G202R residue is located on the protein surface, altered protein-membrane or protein-protein interactions could account for the observed differences. In conclusion, we have tested novel compounds that have shown some chaperone effect on particular glucocerebrosidase mutant enzymes, supporting the enhancement therapy as an alternative approach for Gaucher disease. (C) 2014 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy