SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guelfi S) ;mspu:(article)"

Sökning: WFRF:(Guelfi S) > Tidskriftsartikel

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
5.
  • Deck, M, et al. (författare)
  • Physiology of PNS axons relies on glycolytic metabolism in myelinating Schwann cells
  • 2022
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 17:10, s. e0272097-
  • Tidskriftsartikel (refereegranskat)abstract
    • While lactate shuttle theory states that glial cells metabolize glucose into lactate to shuttle it to neurons, how glial cells support axonal metabolism and function remains unclear. Lactate production is a common occurrence following anaerobic glycolysis in muscles. However, several other cell types, including some stem cells, activated macrophages and tumor cells, can produce lactate in presence of oxygen and cellular respiration, using Pyruvate Kinase 2 (PKM2) to divert pyruvate to lactate dehydrogenase. We show here that PKM2 is also upregulated in myelinating Schwann cells (mSC) of mature mouse sciatic nerve versus postnatal immature nerve. Deletion of this isoform in PLP-expressing cells in mice leads to a deficit of lactate in mSC and in peripheral nerves. While the structure of myelin sheath was preserved, mutant mice developed a peripheral neuropathy. Peripheral nerve axons of mutant mice failed to maintain lactate homeostasis upon activity, resulting in an impaired production of mitochondrial ATP. Action potential propagation was not altered but axonal mitochondria transport was slowed down, muscle axon terminals retracted and motor neurons displayed cellular stress. Additional reduction of lactate availability through dichloroacetate treatment, which diverts pyruvate to mitochondrial oxidative phosphorylation, further aggravated motor dysfunction in mutant mice. Thus, lactate production through PKM2 enzyme and aerobic glycolysis is essential in mSC for the long-term maintenance of peripheral nerve axon physiology and function.
  •  
6.
  • Ruifrok, Anneloes E, et al. (författare)
  • Study protocol : Differential effects of diet and physical activity based interventions in pregnancy on maternal and fetal outcomes: Individual patient data (IPD) meta-analysis and health economic evaluation
  • 2014
  • Ingår i: Systematic Reviews. - : Springer Science and Business Media LLC. - 2046-4053. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundPregnant women who gain excess weight are at risk of complications during pregnancy and in the long term. Interventions based on diet and physical activity minimise gestational weight gain with varied effect on clinical outcomes. The effect of interventions on varied groups of women based on body mass index, age, ethnicity, socioeconomic status, parity, and underlying medical conditions is not clear. Our individual patient data (IPD) meta-analysis of randomised trials will assess the differential effect of diet- and physical activity-based interventions on maternal weight gain and pregnancy outcomes in clinically relevant subgroups of women.Methods/designRandomised trials on diet and physical activity in pregnancy will be identified by searching the following databases: MEDLINE, EMBASE, BIOSIS, LILACS, Pascal, Science Citation Index, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, Database of Abstracts of Reviews of Effects, and Health Technology Assessment Database. Primary researchers of the identified trials are invited to join the International Weight Management in Pregnancy Collaborative Network and share their individual patient data. We will reanalyse each study separately and confirm the findings with the original authors. Then, for each intervention type and outcome, we will perform as appropriate either a one-step or a two-step IPD meta-analysis to obtain summary estimates of effects and 95% confidence intervals, for all women combined and for each subgroup of interest. The primary outcomes are gestational weight gain and composite adverse maternal and fetal outcomes. The difference in effects between subgroups will be estimated and between-study heterogeneity suitably quantified and explored. The potential for publication bias and availability bias in the IPD obtained will be investigated. We will conduct a model-based economic evaluation to assess the cost effectiveness of the interventions to manage weight gain in pregnancy and undertake a value of information analysis to inform future research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy