SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guo Chen) ;hsvcat:2"

Sökning: WFRF:(Guo Chen) > Teknik

  • Resultat 1-10 av 134
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  •  
3.
  • Chen, Xiaowen, et al. (författare)
  • Performance analysis of homogeneous on-chip large-scale parallel computing architectures for data-parallel applications
  • 2015
  • Ingår i: Journal of Electrical and Computer Engineering. - : Hindawi Limited. - 2090-0147 .- 2090-0155. ; 2015
  • Tidskriftsartikel (refereegranskat)abstract
    • On-chip computing platforms are evolving from single-core bus-based systems to many-core network-based systems, which are referred to as On-chip Large-scale Parallel Computing Architectures (OLPCs) in the paper. Homogenous OLPCs feature strong regularity and scalability due to its identical cores and routers. Data-parallel applications have their parallel data subsets that are handled individually by the same program running in different cores. Therefore, data-parallel applications are able to obtain good speedup in homogenous OLPCs. The paper addresses modeling the speedup performance of homogeneous OLPCs for data-parallel applications. When establishing the speedup performance model, the network communication latency and the ways of storing data of data-parallel applications are modeled and analyzed in detail. Two abstract concepts (equivalent serial packet and equivalent serial communication) are proposed to construct the network communication latency model. The uniform and hotspot traffic models are adopted to reflect the ways of storing data. Some useful suggestions are presented during the performance model's analysis. Finally, three data-parallel applications are performed on our cycle-accurate homogenous OLPC experimental platform to validate the analytic results and demonstrate that our study provides a feasible way to estimate and evaluate the performance of data-parallel applications onto homogenous OLPCs.
  •  
4.
  • Guo, Sihua, et al. (författare)
  • Toward ultrahigh thermal conductivity graphene films
  • 2023
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • With increasing demands of high-performance and functionality, electronics devices generate a great amount of heat. Thus, efficient heat dissipation is crucially needed. Owing to its extremely good thermal conductivity, graphene is an interesting candidate for this purpose. In this paper, a two-step temperature-annealing process to fabricate ultrahigh thermal conductive graphene assembled films (GFs) is proposed. The thermal conductivity of the obtained GFs was as high as 3826 +/- 47 W m(-1) K-1. Extending the time of high-temperature annealing significantly improved the thermal performance of the GF. Structural analyses confirmed that the high thermal conductivity is caused by the large grain size, defect-free stacking, and high flatness, which are beneficial for phonon transmission in the carbon lattice. The turbostratic stacking degree decreased with increasing heat treatment time. However, the increase in the grain size after long heat treatment had a more pronounced effect on the phonon transfer of the GF than that of turbostratic stacking. The developed GFs show great potential for efficient thermal management in electronics devices.
  •  
5.
  • Chen, Jianhua, et al. (författare)
  • Highly stretchable organic electrochemical transistors with strain-resistant performance
  • 2022
  • Ingår i: Nature Materials. - : NATURE PORTFOLIO. - 1476-1122 .- 1476-4660. ; 21, s. 564-571
  • Tidskriftsartikel (refereegranskat)abstract
    • Realizing fully stretchable electronic materials is central to advancing new types of mechanically agile and skin-integrable optoelectronic device technologies. Here we demonstrate a materials design concept combining an organic semiconductor film with a honeycomb porous structure with biaxially prestretched platform that enables high-performance organic electrochemical transistors with a charge transport stability over 30-140% tensional strain, limited only by metal contact fatigue. The prestretched honeycomb semiconductor channel of donor-acceptor polymer poly(2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-diketo-pyrrolopyrrole-alt-2,5-bis(3-triethyleneglycoloxy-thiophen-2-yl) exhibits high ion uptake and completely stable electrochemical and mechanical properties over 1,500 redox cycles with 10(4) stretching cycles under 30% strain. Invariant electrocardiogram recording cycles and synapse responses under varying strains, along with mechanical finite element analysis, underscore that the present stretchable organic electrochemical transistor design strategy is suitable for diverse applications requiring stable signal output under deformation with low power dissipation and mechanical robustness. Highly stretchable organic electrochemical transistors with stable charge transport under severe tensional strains are demonstrated using a honeycomb semiconducting polymer morphology, thereby enabling controllable signal output for diverse stretchable bioelectronic applications.
  •  
6.
  • Chen, X., et al. (författare)
  • Achieving memory access equalization via round-trip routing latency prediction in 3D many-core NoCs
  • 2015
  • Ingår i: Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI. - : IEEE. ; , s. 398-403
  • Konferensbidrag (refereegranskat)abstract
    • 3D many-core NoCs are emerging architectures for future high-performance single chips due to its integration of many processor cores and memories by stacking multiple layers. In such architecture, because processor cores and memories reside in different locations (center, corner, edge, etc.), memory accesses behave differently due to their different communication distances, and the performance (latency) gap of different memory accesses becomes larger as the network size is scaled up. This phenomenon may lead to very high latencies suffered from by some memory accesses, thus degrading the system performance. To achieve high performance, it is crucial to reduce the number of memory accesses with very high latencies. However, this should be done with care since shortening the latency of one memory access can worsen the latency of another as a result of shared network resources. Therefore, the goal should focus on narrowing the latency difference of memory accesses. In the paper, we address the goal by proposing to prioritize the memory access packets based on predicting the round-trip routing latencies of memory accesses. The communication distance and the number of the occupied items in the buffers in the remaining routing path are used to predict the round-trip latency of a memory access. The predicted round-trip routing latency is used as the base to arbitrate the memory access packets so that the memory access with potential high latency can be transferred as early and fast as possible, thus equalizing the memory access latencies as much as possible. Experiments with varied network sizes and packet injection rates prove that our approach can achieve the goal of memory access equalization and outperforms the classic round-robin arbitration in terms of maximum latency, average latency, and LSD1. In the experiments, the maximum improvement of the maximum latency, the average latency and the LSD are 80%, 14%, and 45% respectively.
  •  
7.
  • Pecunia, Vincenzo, et al. (författare)
  • Roadmap on energy harvesting materials
  • 2023
  • Ingår i: Journal of Physics. - : IOP Publishing. - 2515-7639. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere.
  •  
8.
  • Tommasini, R., et al. (författare)
  • Accepted Tutorials at The Web Conference 2022
  • 2022
  • Ingår i: WWW 2022 - Companion Proceedings of the Web Conference 2022. - New York, NY, USA : Association for Computing Machinery (ACM). ; , s. 391-399
  • Konferensbidrag (refereegranskat)abstract
    • This paper summarizes the content of the 20 tutorials that have been given at The Web Conference 2022: 85% of these tutorials are lecture style, and 15% of these are hands on. 
  •  
9.
  • You, Xiaohu, et al. (författare)
  • Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts
  • 2021
  • Ingår i: Science China Information Sciences. - : Science Press. - 1674-733X .- 1869-1919. ; 64:1
  • Forskningsöversikt (refereegranskat)abstract
    • The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
  •  
10.
  • Chen, Jiajia, et al. (författare)
  • Characterization of Longitudinal Thermal Conductivity of Graphene Film
  • 2021
  • Ingår i: 2021 22nd International Conference on Electronic Packaging Technology, ICEPT 2021.
  • Konferensbidrag (refereegranskat)abstract
    • The chase of high performance by chip manufacturers has greatly increased the power consumption of integrated circuits, which brings great challenges to the heat dissipation of electronics systems. It has also slowed down following up of the Moore's Law, and it is expected to hit the wall soon [1]. Graphene film with high in-plane thermal conductivity is one of the key materials to make it possible for electronics industry to continue to follow the Moore's Law. However, there are few studies focusing on the longitudinal thermal conductivity of graphene films. The purpose of this study is to investigate the longitudinal thermal conductivity of graphene films according to ASTM D5470 [2]. The results show that the longitudinal thermal conductivity of the pressed graphene film is greater than that of the unpressurized graphene film. The longitudinal thermal conductivity is 10.6 W/m· K for the unpressurized graphene film and 20.6 W/m· K for the pressed graphene film.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 134
Typ av publikation
tidskriftsartikel (104)
konferensbidrag (20)
forskningsöversikt (6)
bokkapitel (2)
bok (1)
annan publikation (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (126)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Guo, Sheng, 1981 (21)
Guo, Y (8)
Sundén, Bengt (7)
Hu, Q. (6)
Chen, Jiajia (6)
Chen, X. (5)
visa fler...
Li, Y. (5)
Liu, Z. (5)
Sun, Jie, 1977 (5)
Shi, Yijun (5)
Liu, Johan, 1960 (5)
Lu, Zhonghai (5)
Guo, S, (5)
Mu, Liwen (5)
Zhu, Jiahua (5)
Chen, G. (4)
Wang, Z. (4)
Chen, J. (4)
Yan, Y. H. (4)
Chen, Yun, 1978 (4)
Xu, Chen (4)
Xu, X. (4)
Chen, Long (4)
Chen, S. (3)
Chen, Y. (3)
Liu, Y. (3)
Wang, H. (3)
Zhang, H. (3)
Zhang, Y. (3)
Chen, Z. (3)
Wang, J. -M (3)
Wang, W. (3)
Chen, Jin (3)
Larsson, Erik G (3)
Mao, Huahai, 1971- (3)
Chen, D (3)
Wang, Shu Min, 1963 (3)
Lindwall, Greta (3)
Guo, Z (3)
Ananthanarayanan, Du ... (3)
Holländer Pettersson ... (3)
Yan, Jinyue, 1959- (3)
Krajnovic, Sinisa, 1 ... (3)
Bu, Junling (3)
Li, Qishuang (3)
Ma, Ying (3)
Hu, Zhimin (3)
Liu, Xiuyu (3)
Jiao, Xiang, 1990 (3)
Guo, Juan (3)
visa färre...
Lärosäte
Chalmers tekniska högskola (55)
Kungliga Tekniska Högskolan (40)
Lunds universitet (14)
Luleå tekniska universitet (11)
Linköpings universitet (10)
Uppsala universitet (5)
visa fler...
Mälardalens universitet (5)
Mittuniversitetet (2)
RISE (2)
Göteborgs universitet (1)
Umeå universitet (1)
Stockholms universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (132)
Kinesiska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (35)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy