SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Guo W) ;mspu:(conferencepaper)"

Search: WFRF:(Guo W) > Conference paper

  • Result 1-10 of 20
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Zhang, S. -N, et al. (author)
  • Introduction to the high energy cosmic-radiation detection (HERD) facility onboard China's future space station
  • 2017
  • In: Proceedings of Science. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads onboard China's Space Station, which is planned for operation starting around 2025 for about 10 years. The main scientific objectives of HERD are searching for signals of dark matter annihilation products, precise cosmic electron (plus positron) spectrum and anisotropy measurements up to 10 TeV, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 7,500 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of six X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side STKs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV and 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R&D is under way for reading out the LYSO signals with optical fiber coupled to image intensified IsCMOS and CALO prototype of 250 LYSO crystals. 
  •  
3.
  • Zhang, S. N., et al. (author)
  • The high energy cosmic-radiation detection (HERD) facility onboard China's Space Station
  • 2014
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Conference paper (peer-reviewed)abstract
    • The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 104 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of seven X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side SKTs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R and D is under way for reading out the LYSO signals with optical fiber coupled to image intensified CCD and the prototype of one layer of CALO. 
  •  
4.
  • Tommasini, R., et al. (author)
  • Accepted Tutorials at The Web Conference 2022
  • 2022
  • In: WWW 2022 - Companion Proceedings of the Web Conference 2022. - New York, NY, USA : Association for Computing Machinery (ACM). ; , s. 391-399
  • Conference paper (peer-reviewed)abstract
    • This paper summarizes the content of the 20 tutorials that have been given at The Web Conference 2022: 85% of these tutorials are lecture style, and 15% of these are hands on. 
  •  
5.
  •  
6.
  • Arnold, Cord L., et al. (author)
  • Spatiotemporal coupling of attosecond pulses
  • 2019
  • In: 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019. - 9781728104690 ; Part F140-CLEO_Europe 2019
  • Conference paper (peer-reviewed)abstract
    • Attosecond pulses in the extreme ultraviolet (XUV) spectral range are today routinely generated via high-order harmonic generation (HHG), when intense ultrashort laser pulses are focused into a gaseous generation medium. The effect is most easily understood in a semi-classical picture [1]. An electron can tunnel ionize from the distorted atomic potential, pick up kinetic energy in the laser field, potentially return to its parent ion and recombine. The excess energy is emitted as XUV photon. The process repeats for every half-cycle of the driving field, resulting in a train of attosecond pulses and in the frequency domain in the well-known, odd-order comb of harmonics. Two main families of electron trajectories leading to the same photon energy can be distinguished into 'short' and 'long', according to their time of travel in the continuum. Due to the complicated nature of the HHG process, attosecond pulses usually cannot be separated into their temporal and spatial profiles, but instead have strong chromatic aberration and are spatio-temporally coupled [2-4].
  •  
7.
  • Backe, Carin, et al. (author)
  • Serially connected EAP based tape yarns for in-air actuation using textile structures
  • 2023
  • Conference paper (other academic/artistic)abstract
    • Smart textiles that have the capability for actuation are of great interest for creating wearables and haptic devices. Through the use of textile fabric production processes electroactive polymeric materials in the form of film-based yarns can be integrated and combined with passive yarns to create soft, actuating fabrics. This way single EAP materials can be transformed into segments consisting of multiple EAP yarns working together. Furthermore, these segments can be positioned within a fabric to work individually or simultaneously in different patterns by use of incorporated conductive yarn paths. While the chase for additivity in force is a long-standing part of developing new actuator structures, so is the need for additivity in displacement motion. Here we construct an actuating textile fabric through the process of weaving that is able to operate in-air using polypyrrole-based tape yarns with choline acetate ionic liquid. Finding the balance between the weaving parameters turned out to be key. We found that in a vertically suspended arrangement, a three-segment serially connected fabric assembly demonstrated an accumulative effect in displacement and a joint-like motion behaviour. This opens up for more complicated motion patterns to be created through textile processing of EAP materials. 
  •  
8.
  • Euler, Luisa, et al. (author)
  • Textile Electrodes : Influence of Electrode Construction and Pressure on Stimulation Performance in Neuromuscular Electrical Stimulation (NMES)
  • 2021
  • In: Engineering in Medicine & Biology Society (EMBC), 2021 43rd Annual International Conference of the IEEE. - : IEEE. - 9781728111797 ; 2021, s. 1305-1308
  • Conference paper (peer-reviewed)abstract
    • The major reason for preventable hospital death isvenous thromboembolism (VTE). Non-pharmacologicaltreatment options include electrical stimulation or compressiontherapy to improve blood flow in the extremities. Textileelectrodes offer potential to replace bulky devices commonlyused in this field, thereby improving the user compliance. In thiswork, the performance of dry and wet knitted electrodes incombination with pressure application to the electrode wasevaluated in neuromuscular electrical stimulation (NMES). Amotor point stimulation on the calf was performed on ninehealthy subjects to induce a plantarflexion and the requiredstimulation intensity as well as the perceived pain were assessed.The performance of the different electrode constructions wascompared and the influence of the pressure application wasanalysed. The results show that wet textile electrodes (0.9 %saline solution) perform significantly better than dry electrodes.However, opportunities were found for improving theperformance of dry textile electrodes by using an uneven surfacetopography in combination with an intermediate to highpressure application to the electrode (> 20 mmHg), e.g. by usinga compression stocking. Moreover, the smaller of the two testedelectrode areas (16 cm2; 32 cm2) appears to be favourable interms of stimulation comfort and efficiency.
  •  
9.
  • Guo, L., et al. (author)
  • 2-Cyanopyridine as a corrosion inhibitor for mild steel : An in silico study
  • 2020
  • In: AIP Conference Proceedings. - : American Institute of Physics Inc..
  • Conference paper (peer-reviewed)abstract
    • The corrosion of mild steel in service environments is a complex and random phenomenon. Using inhibitors is a simple, inexpensive, and effective anticorrosion approach. In this work, the inhibition performance of 2-Cyanopyridine (CP) against the corrosion of mild steel in acid solution was investigated by means of computer simulation. Some key properties such as solubility, toxicity were calculated and analyzed. Density functional theory (DFT) calculations was employed to gain insights into the adsorption behavior and inhibition mechanism leading to the formation of a protective film. Our findings will contribute to the development and application of novel corrosion inhibitors.
  •  
10.
  • Guo, W., et al. (author)
  • Effects of bull bars on head and lower extremity injuries in vehicle-pedestrian collision
  • 2012
  • In: 2012 3rd International Conference on Digital Manufacturing and Automation, ICDMA 2012. Guilin, Guangxi, 31 July - 2 August 2012. - 9780769547725 ; , s. 356-359
  • Conference paper (peer-reviewed)abstract
    • This study aimed to investigate the effect of bull bar on injuries of pedestrian head and lower extremities based on accident reconstructions and parameters analysis. Four real-world accidents with detailed information were reconstructed via simplified vehicle-pedestrian collision models (two of which with bull bars) in MADYMO. The injury mechanisms of pedestrians caused by bull bar were analyzed, comparing with non-bull-bar vehicle. Moreover, a pedestrian-friendly bull bar was proposed considering the influence of structures of bull bars on pedestrian injuries. The results of accidents reconstructions indicated that the rigid bull bar caused high risk of injuries on lower extremities. The design parameters, such as the height and leading length of upper bull bar had remarkable influences on the injury severity of head.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view