SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gurholt T. P.) "

Sökning: WFRF:(Gurholt T. P.)

  • Resultat 1-10 av 13
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ching, C. R. K., et al. (författare)
  • What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group
  • 2020
  • Ingår i: Human Brain Mapping. - 1065-9471 .- 1097-0193.
  • Tidskriftsartikel (refereegranskat)abstract
    • MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
  •  
2.
  • Grasby, KL, et al. (författare)
  • The genetic architecture of the human cerebral cortex
  • 2020
  • Ingår i: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 367:6484, s. 1340-
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Schwarz, Emanuel, et al. (författare)
  • Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder
  • 2019
  • Ingår i: Translational Psychiatry. - : Springer Nature. - 2158-3188 .- 2158-3188. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a severe mental disorder characterized by numerous subtle changes in brain structure and function. Machine learning allows exploring the utility of combining structural and functional brain magnetic resonance imaging (MRI) measures for diagnostic application, but this approach has been hampered by sample size limitations and lack of differential diagnostic data. Here, we performed a multi-site machine learning analysis to explore brain structural patterns of T1 MRI data in 2668 individuals with schizophrenia, bipolar disorder or attention-deficit/hyperactivity disorder, and healthy controls. We found reproducible changes of structural parameters in schizophrenia that yielded a classification accuracy of up to 76% and provided discrimination from ADHD, through it lacked specificity against bipolar disorder. The observed changes largely indexed distributed grey matter alterations that could be represented through a combination of several global brain-structural parameters. This multi-site machine learning study identified a brain-structural signature that could reproducibly differentiate schizophrenia patients from controls, but lacked specificity against bipolar disorder. While this currently limits the clinical utility of the identified signature, the present study highlights that the underlying alterations index substantial global grey matter changes in psychotic disorders, reflecting the biological similarity of these conditions, and provide a roadmap for future exploration of brain structural alterations in psychiatric patients.
  •  
4.
  • Wierenga, Lara M., et al. (författare)
  • Greater male than female variability in regional brain structure across the lifespan
  • 2020
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193.
  • Tidskriftsartikel (refereegranskat)abstract
    • For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Tønnesen, Siren, et al. (författare)
  • Brain Age Prediction Reveals Aberrant Brain White Matter in Schizophrenia and Bipolar Disorder : A Multisample Diffusion Tensor Imaging Study
  • 2020
  • Ingår i: Biological Psychiatry. - : Elsevier BV. - 2451-9022. ; 5:12, s. 1095-1103
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Schizophrenia (SZ) and bipolar disorder (BD) share substantial neurodevelopmental components affecting brain maturation and architecture. This necessitates a dynamic lifespan perspective in which brain aberrations are inferred from deviations from expected lifespan trajectories. We applied machine learning to diffusion tensor imaging (DTI) indices of white matter structure and organization to estimate and compare brain age between patients with SZ, patients with BD, and healthy control (HC) subjects across 10 cohorts.METHODS: We trained 6 cross-validated models using different combinations of DTI data from 927 HC subjects (18-94 years of age) and applied the models to the test sets including 648 patients with SZ (18-66 years of age), 185 patients with BD (18-64 years of age), and 990 HC subjects (17-68 years of age), estimating the brain age for each participant. Group differences were assessed using linear models, accounting for age, sex, and scanner. A meta-analytic framework was applied to assess the heterogeneity and generalizability of the results.RESULTS: Tenfold cross-validation revealed high accuracy for all models. Compared with HC subjects, the model including all feature sets significantly overestimated the age of patients with SZ (Cohen's d = -0.29) and patients with BD (Cohen's d = 0.18), with similar effects for the other models. The meta-analysis converged on the same findings. Fractional anisotropy-based models showed larger group differences than the models based on other DTI-derived metrics.CONCLUSIONS: Brain age prediction based on DTI provides informative and robust proxies for brain white matter integrity. Our results further suggest that white matter aberrations in SZ and BD primarily consist of anatomically distributed deviations from expected lifespan trajectories that generalize across cohorts and scanners.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy