SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guyon Olivier) ;lar1:(uu)"

Sökning: WFRF:(Guyon Olivier) > Uppsala universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kaeufl, Hans Ulrich, et al. (författare)
  • NEAR : New Earths in the Alpha Cen Region (bringing VISIR as a "visiting instrument" to ESO-VLT-UT4)
  • 2018
  • Ingår i: Ground-Based And Airborne Instrumentation For Astronomy VII. - : SPIE. - 9781510619586
  • Konferensbidrag (refereegranskat)abstract
    • ESO in collaboration with the Breakthrough Initiatives, is adding a dedicated coronagraph to the Very Large Telescope mid-IR imager (VISIR) to further boost the high dynamic range imaging capability of this instrument. After the VISIR upgrade in 2012, where coronagraphic masks were first added to VISIR, it became evident that coronagraphy at a ground-based 8m-class telescope, even at wavelengths as long as 10 mu m, critically needs adaptive optics. For VISIR, a work-horse observatory facility instrument in normal operations, this is "easiest" achieved by bringing VISIR as a visiting instrument to the ESO-VLT-UT4 having an adaptive M2. This "visit" enables a meaningful search for Earth-like planets in the habitable zone around both alpha-Cen(1) and alpha-Cen(2). Meaningful here means, achieving a contrast of approximate to 10(-6) within approximate to 0.8 arcsec from the star. Various measures to improve the sensitivity of VISIR will be applied, especially a dedicated filter, faster chopping and a Strehl-ratio close to 100% thanks to extreme adaptive optics. This should allow to detect a planet twice the diameter of Earth in 50 h on source integration time. Key components will be a diffractive coronagraphic mask, the annular groove phase mask (AGPM), optimized for the most sensitive spectral band-pass in the N-band, complemented by a sophisticated apodizer at the level of the Lyot stop. For VISIR noise filtering based on fast chopping is required. A novel internal chopper system will be integrated into the cryostat. This chopper is based on the standard technique from early radio astronomy, conceived by the microwave pioneer Robert Dicke in 1946, which was instrumental for the discovery of the 3K microwave background. For risk mitigation all components are being tested and quali fi ed under realistic conditions in the lab at ESO headquarters before integration into the instrument. The performance or suppression of the coronagraph is so good, that a non-thermal source (vulgo a laser) is needed on the test-bench. We will give an overview of the optical changes to VISIR, the implementation of wave front sensing, the Dicke switch design and laboratory testing, the AGPM design and laboratory testing, non common path error control with a ZELDA mask, sensitivity and contrast estimates, data flow and analysis, the overall project status, plan and outlook Needless to say that this project is of critical interest for future infrared instrumentation at the next generation of extremely large telescopes aiming at surveying the solar neighborhood for terrestrial planets by detecting and characterizing them based on their mid-IR fluxes.
  •  
2.
  • Wang, Jason J., et al. (författare)
  • Keck/NIRC2 L'-Band Imaging of Jovian-Mass Accreting Protoplanets around PDS 70
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 159:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We present L'-band imaging of the PDS 70 planetary system with Keck/NIRC2 using the new infrared pyramid wave front sensor. We detected both PDS 70 b and c in our images, as well as the front rim of the circumstellar disk. After subtracting off a model of the disk, we measured the astrometry and photometry of both planets. Placing priors based on the dynamics of the system, we estimated PDS 70 b to have a semimajor axis of au and PDS 70 c to have a semimajor axis of au (95% credible interval). We fit the spectral energy distribution (SED) of both planets. For PDS 70 b, we were able to place better constraints on the red half of its SED than previous studies and inferred the radius of the photosphere to be 2–3 R Jup. The SED of PDS 70 c is less well constrained, with a range of total luminosities spanning an order of magnitude. With our inferred radii and luminosities, we used evolutionary models of accreting protoplanets to derive a mass of PDS 70 b between 2 and 4 M Jup and a mean mass accretion rate between 3 × 10−7 and 8 × 10−7 M Jup/yr. For PDS 70 c, we computed a mass between 1 and 3 M Jup and mean mass accretion rate between 1 × 10−7 and 5 × 10−7 M Jup/yr. The mass accretion rates imply dust accretion timescales short enough to hide strong molecular absorption features in both planets' SEDs.
  •  
3.
  • Devos, David, et al. (författare)
  • Trial of Deferiprone in Parkinson’s Disease
  • 2022
  • Ingår i: New England Journal of Medicine. - : Massachusetts Medical Society. - 0028-4793 .- 1533-4406. ; 387:22, s. 2045-2055
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUNDIron content is increased in the substantia nigra of persons with Parkinson's disease and may contribute to the pathophysiology of the disorder. Early research suggests that the iron chelator deferiprone can reduce nigrostriatal iron content in persons with Parkinson's disease, but its effects on disease progression are unclear.METHODSWe conducted a multicenter, phase 2, randomized, double-blind trial involving participants with newly diagnosed Parkinson's disease who had never received levodopa. Participants were assigned (in a 1:1 ratio) to receive oral deferiprone at a dose of 15 mg per kilogram of body weight twice daily or matched placebo for 36 weeks. Dopaminergic therapy was withheld unless deemed necessary for symptom control. The primary outcome was the change in the total score on the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS; range, 0 to 260, with higher scores indicating more severe impairment) at 36 weeks. Secondary and exploratory clinical outcomes at up to 40 weeks included measures of motor and nonmotor disability. Brain iron content measured with the use of magnetic resonance imaging was also an exploratory outcome.RESULTSA total of 372 participants were enrolled; 186 were assigned to receive deferiprone and 186 to receive placebo. Progression of symptoms led to the initiation of dopaminergic therapy in 22.0% of the participants in the deferiprone group and 2.7% of those in the placebo group. The mean MDS-UPDRS total score at baseline was 34.3 in the deferiprone group and 33.2 in the placebo group and increased (worsened) by 15.6 points and 6.3 points, respectively (difference, 9.3 points; 95% confidence interval, 6.3 to 12.2; P<0.001). Nigrostriatal iron content decreased more in the deferiprone group than in the placebo group. The main serious adverse events with deferiprone were agranulocytosis in 2 participants and neutropenia in 3 participants.CONCLUSIONSIn participants with early Parkinson's disease who had never received levodopa and in whom treatment with dopaminergic medications was not planned, deferiprone was associated with worse scores in measures of parkinsonism than those with placebo over a period of 36 weeks.
  •  
4.
  • Wagner, Kevin, et al. (författare)
  • Imaging low-mass planets within the habitable zone of α Centauri
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Giant exoplanets on wide orbits have been directly imaged around young stars. If the thermal background in the mid-infrared can be mitigated, then exoplanets with lower masses can also be imaged. Here we present a ground-based mid-infrared observing approach that enables imaging low-mass temperate exoplanets around nearby stars, and in particular within the closest stellar system, alpha Centauri. Based on 75-80% of the best quality images from 100h of cumulative observations, we demonstrate sensitivity to warm sub-Neptune-sized planets throughout much of the habitable zone of alpha Centauri A. This is an order of magnitude more sensitive than state-of-the-art exoplanet imaging mass detection limits. We also discuss a possible exoplanet or exozodiacal disk detection around alpha Centauri A. However, an instrumental artifact of unknown origin cannot be ruled out. These results demonstrate the feasibility of imaging rocky habitable-zone exoplanets with current and upcoming telescopes. Imaging of low-mass exoplanets can be achieved once the thermal background in the mid-infrared (MIR) wavelengths can be mitigated. Here, the authors present a ground-based MIR observing approach enabling imaging low-mass temperate exoplanets around nearby stars.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy