SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hörnblad Andreas) "

Sökning: WFRF:(Hörnblad Andreas)

  • Resultat 1-10 av 12
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlgren, Ulf, et al. (författare)
  • Optical imaging of islets : new possibilities by the development of infrared fluorescent proteins
  • 2009
  • Ingår i: Islets. - 1938-2022. ; 1:2, s. 163-164
  • Tidskriftsartikel (refereegranskat)abstract
    • The capacity to record the spatial and quantitative distribution of cellular subtypes involved in diabetogenic processes is a key element in experimental diabetes research. A non-invasive technique to accurately monitor parameters such as pancreatic β-cell mass (BCM) and its distribution would provide a stepping stone in understanding different aspects of diabetes pathogenesis. It would also assist in the development of therapeutic regimes by providing a tool for the evaluation of anti-diabetic drugs or other curative or diagnostic measures. At present, a range of imaging modalities are being explored for this purpose. Whereas nuclear imaging techniques, characterised by their high tissue penetration depth but relatively low spatial resolution, appear most promising for the study of humans and large animals, optical imaging enables a route to cost-effective, high sensitivity, high resolution imaging in rodent models for disease. In this commentary, the potential impact of infrared fluorescent proteins (IFPs), as recently reported by Shu et al in Science, for imaging of the pancreas in small animals will be discussed.
  •  
2.
  • Alanentalo, Tomas, et al. (författare)
  • Quantification and 3-D imaging of the insulitis-induced destruction of β-cells in murine type 1 diabetes
  • 2010
  • Ingår i: Diabetes. - 0012-1797 .- 1939-327X. ; 59:7, s. 1756-1764
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The aim of this study was to refine the information regarding the quantitative and spatial dynamics of infiltrating lymphocytes and remaining beta-cell volume during the progression of type 1 diabetes in the NOD mouse model of the disease.Research design and methods: Using an ex vivo technique, optical projection tomography (OPT), we quantified and assessed the 3D spatial development and progression of insulitis and beta-cell destruction in pancreas from diabetes prone NOD and non-diabetes prone congenic NOD.H-2b mice between 3 and 16 weeks of age.Results: Together with results showing the spatial dynamics of the insulitis process we provide data of beta-cell volume distributions down to the level of the individual islets and throughout the pancreas during the development and progression of type 1 diabetes. Our data provide evidence for a compensatory growth potential of the larger insulin(+) islets during the later stages of the disease around the time point for development of clinical diabetes. This is in contrast to smaller islets, which appear less resistant to the autoimmune attack. We also provide new information on the spatial dynamics of the insulitis process itself, including its apparently random distribution at onset, the local variations during its further development, and the formation of structures resembling tertiary lymphoid organs at later phases of insulitis progression.Conclusions: Our data provides a powerful tool for phenotypic analysis of genetic and environmental effects on type 1 diabetes etiology as well as for evaluating the potential effect of therapeutic regimes.
  •  
3.
  • Cheddad, Abbas, et al. (författare)
  • Improving signal detection in emission optical projection tomography via single source multi-exposure image fusion
  • 2013
  • Ingår i: Optics Express. - : Optical Society of America. - 1094-4087 .- 1094-4087. ; 21:14, s. 16584-16604
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate a technique to improve structural data obtained from Optical Projection Tomography (OPT) using Image Fusion (IF) and contrast normalization. This enables the visualization of molecular expression patterns in biological specimens with highly variable contrast values. In the approach, termed IF-OPT, different exposures are fused by assigning weighted contrasts to each. When applied to projection images from mouse organs and digital phantoms our results demonstrate the capability of IF-OPT to reveal high and low signal intensity details in challenging specimens. We further provide measurements to highlight the benefits of the new algorithm in comparison to other similar methods.
  •  
4.
  • Eriksson, Anna U., et al. (författare)
  • Near infrared optical projection tomography for assessments of beta-cell mass distribution in diabetes research
  • 2013
  • Ingår i: Journal of Visualized Experiments. - 1940-087X .- 1940-087X. ; 71
  • Tidskriftsartikel (refereegranskat)abstract
    • By adapting OPT to include the capability of imaging in the near infrared (NIR) spectrum, we here illustrate the possibility to image larger bodies of pancreatic tissue, such as the rat pancreas, and to increase the number of channels (cell types) that may be studied in a single specimen. We further describe the implementation of a number of computational tools that provide: 1/ accurate positioning of a specimen's (in our case the pancreas) centre of mass (COM) at the axis of rotation (AR)2; 2/ improved algorithms for post-alignment tuning which prevents geometric distortions during the tomographic reconstruction2 and 3/ a protocol for intensity equalization to increase signal to noise ratios in OPT-based BCM determinations3. In addition, we describe a sample holder that minimizes the risk for unintentional movements of the specimen during image acquisition. Together, these protocols enable assessments of BCM distribution and other features, to be performed throughout the volume of intact pancreata or other organs (e.g. in studies of islet transplantation), with a resolution down to the level of individual islets of Langerhans.
  •  
5.
  • Hörnblad, Andreas, 1982-, et al. (författare)
  • An improved protocol for optical projection tomography imaging reveals lobular heterogeneities in pancreatic islet and β-cell mass distribution
  • 2011
  • Ingår i: Islets. - Austin : Landes Bioscience. - 1938-2014. ; 3:4, s. 204-208
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical projection tomography (OPT) imaging is a powerful tool for three-dimensional imaging of gene and protein distribution patterns in biomedical specimens. We have previously demonstrated the possibility, by this technique, to extract information of the spatial and quantitative distribution of the islets of Langerhans in the intact mouse pancreas. In order to further increase the sensitivity of OPT imaging for this type of assessment, we have developed a protocol implementing a computational statistical approach: contrast limited adaptive histogram equalization (CLAHE). We demonstrate that this protocol significantly increases the sensitivity of OPT imaging for islet detection, helps preserve islet morphology and diminish subjectivity in thresholding for tomographic reconstruction. When applied to studies of the pancreas from healthy C57BL/6 mice, our data reveal that, at least in this strain, the pancreas harbors substantially more islets than has previously been reported. Further, we provide evidence that the gastric, duodenal and splenic lobes of the pancreas display dramatic differences in total and relative islet and β-cell mass distribution. This includes a 75% higher islet density in the gastric lobe as compared to the splenic lobe and a higher relative volume of insulin producing cells in the duodenal lobe as compared to the other lobes. Altogether, our data show that CLAHE substantially improves OPT based assessments of the islets of Langerhans and that lobular origin must be taken into careful consideration in quantitative and spatial assessments of the pancreas.
  •  
6.
  • Hörnblad, Andreas, et al. (författare)
  • Dissection of the Fgf8 regulatory landscape by in vivo CRISPR-editing reveals extensive intra- and inter-enhancer redundancy
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723 .- 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Developmental genes are often regulated by multiple elements with overlapping activity. Yet, in most cases, the relative function of those elements and their contribution to endogenous gene expression remain poorly characterized. An example of this phenomenon is that distinct sets of enhancers have been proposed to direct Fgf8 in the limb apical ectodermal ridge and the midbrain-hindbrain boundary. Using in vivo CRISPR/Cas9 genome engineering, we functionally dissect this complex regulatory ensemble and demonstrate two distinct regulatory logics. In the apical ectodermal ridge, the control of Fgf8 expression appears distributed between different enhancers. In contrast, we find that in the midbrain-hindbrain boundary, one of the three active enhancers is essential while the other two are dispensable. We further dissect the essential midbrain-hindbrain boundary enhancer to reveal that it is also composed by a mixture of essential and dispensable modules. Cross-species transgenic analysis of this enhancer suggests that its composition may have changed in the vertebrate lineage.
  •  
7.
  • Hörnblad, Andreas, 1982- (författare)
  • Imaging the pancreas : new aspects on lobular development and adult constitution
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • The mouse pancreas is a mixed exocrine and endocrine glandconsisting of three lobular compartments: the splenic, duodenal and gastric lobes. During embryogenesis, the pancreas forms from two progenitor populations located on the dorsal and ventral side of the primitive gut tube. These anlagen are brought in close proximity as the gut elongates and rotates, and fuse to form a single organ. The splenic and duodenal lobes develop from the dorsal and ventral anlagen, respectively. In the adult pancreas, exocrine tissue secretes digestive enzymes intothe gut lumen to support nutrient uptake. The endocrine Islets of Langerhans are scattered throughout the exocrine tissue and aid in regulation of energy homeostasis through the secretion of hormones. One of the key players in energy homeostasis is the pancreatic ß-cell, which is the most abundant cell type of the islets. The β-cells regulates blood glucose levels through the action of insulin. Conditions where this regulation does not function properly are gathered under the common name of Diabetes mellitus. Type 1 diabetes (T1D) is characterized by insulin deficiency due to autoimmune destruction of the ß-cells. Using recently developed protocols for optical projection tomography (OPT) whole-organ imaging, we have revealed new spatial and quantitative aspects on ß-cell mass dynamics and immune infiltration during the course of T1D development in the non-obese diabetic (NOD) mouse model. We show that although immune infiltration appears to occur asynchronously throughout the organ, smaller islets, mainly located in the periphery of the organ, preferentially loose their ß-cells during early stages of disease progression. Larger islets appear more resistant to the autoimmune attack and our data indicate the existence of a compensatory proliferative capacity within these islets. We also report the appearance of structures resembling tertiary lymphoid organs (TLOs) in association with the remaining islets during later phases of T1D progression. OPT has already proven to be a useful tool for assessments of ß-cellmass in the adult mouse pancreas. However, as with other techniques, previous protocols have relied on a tedious degree of manual postivacquisition editing. To further refine OPT-based assessment of pancreatic ß-cell mass distribution in the murine pancreas, we implemented a computational statistical approach, Contrast-Limited Adaptive Histogram Normalisation (CLAHE), to the OPT projection data of pancreata from C57Bl/6 mice. This methodology provided increased islet detection sensitivity, improved islet morphology and diminished subjectivity in thresholding for reconstruction and quantification. Using this approach, we could report a substantially higher number of islets than previously described for this strain and provide evidence of significant differences in islet mass distribution between the pancreatic lobes. The gastric lobe stood out in particular and contained a 75% higher islet density as compared to the splenic lobe. Although the development of the early pancreatic buds has been relatively well studied, later morphogenetic events are less clear and information regarding the formation of the gastric lobe has largely been missing. Using OPT we have generated a quantitative three-dimensional road map of pancreatic morphogenesis in the mouse. We show that the gastric lobe forms as a perpendicular outgrowth fromthe stem of the dorsal pancreas at around embryonic day (e) 13.5, which grows into a mesenchymal domain overlaying the pyloric sphincter and proximal part of the glandular stomach. By analyzing mutant mice with aberrant spleen development, we further demonstrate that proper formation of the gastric lobe is dependent on the initial formation of the closely positioned spleen, indicating a close interplay between pancreatic and splenic mesenchyme during development. Additionally, we show that the expression profile of markers for pancreatic multipotent progenitors within the pancreas is heterogenous with regards to lobular origin. Altogether, our studies regarding the morphogenesis and adult constitution of the mouse pancreas recognize lobular heterogeneities that add important information for future interpretations of this organ.
  •  
8.
  • Hörnblad, Andreas, 1982-, et al. (författare)
  • Impaired spleen formation perturbs morphogenesis of the gastric lobe of the pancreas
  • 2011
  • Ingår i: PLOS ONE. - San Francisco, CA : Public Library of Science. - 1932-6203. ; 6:6, s. e21753-
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the extensive use of the mouse as a model for studies of pancreas development and disease, the development of the gastric pancreatic lobe has been largely overlooked. In this study we use optical projection tomography to provide a detailed three-dimensional and quantitative description of pancreatic growth dynamics in the mouse. Hereby, we describe the epithelial and mesenchymal events leading to the formation of the gastric lobe of the pancreas. We show that this structure forms by perpendicular growth from the dorsal pancreatic epithelium into a distinct lateral domain of the dorsal pancreatic mesenchyme. Our data support a role for spleen organogenesis in the establishment of this mesenchymal domain and in mice displaying perturbed spleen development, including Dh +/-, Bapx1-/- and Sox11-/-, gastric lobe development is disturbed. We further show that the expression profile of markers for multipotent progenitors is delayed in the gastric lobe as compared to the splenic and duodenal pancreatic lobes. Altogether, this study provides new information regarding the developmental dynamics underlying the formation of the gastric lobe of the pancreas and recognizes lobular heterogeneities regarding the time course of pancreatic cellular differentiation. Collectively, these data are likely to constitute important elements in future interpretations of the developing and/or diseased pancreas.
  •  
9.
  • Hörnblad, Andreas, et al. (författare)
  • The pancreas
  • 2015. - 1
  • Ingår i: Kaufman's atlas of mouse development supplement. - : Elsevier. - 9780128000434 - 9780128009130 ; , s. 85-94
  • Bokkapitel (refereegranskat)abstract
    • This chapter aims to provide a three-dimensional description of the key morphological events, through which a discrete region of the early gut epithelium, as well as its associated mesenchyme, gives rise to the adult pancreas. Facilitated by recent advances in optical imaging techniques, including light sheet fluorescence microscopy and optical projection tomography, we present image series illustrating the growth of the organ and the formation of key morphological and anatomical features. Given the close developmental relationship between the pancreas-associated mesenchyme and the spleen anlage, and thus the potential for the developing spleen to influence pancreas morphogenesis, we include a brief section which covers the early development of this organ. Finally, we describe the spatial and quantitative distribution of the pancreatic endocrine (β-cell) component in adult mice and highlight lobular heterogeneities that may affect phenotypical evaluations of the gland.
  •  
10.
  • Jo, Junghyo, et al. (författare)
  • The fractal spatial distribution of pancreatic islets in three dimensions : a self-avoiding growth model
  • 2013
  • Ingår i: Physical Biology. - : Institute of Physics Publishing (IOPP). - 1478-3967 .- 1478-3975. ; 10:3, s. 036009-
  • Tidskriftsartikel (refereegranskat)abstract
    • The islets of Langerhans, responsible for controlling blood glucose levels, are dispersed within the pancreas. A universal power law governing the fractal spatial distribution of islets in two-dimensional pancreatic sections has been reported. However, the fractal geometry in the actual three-dimensional pancreas volume, and the developmental process that gives rise to such a self-similar structure, has not been investigated. Here, we examined the three-dimensional spatial distribution of islets in intact mouse pancreata using optical projection tomography and found a power law with a fractal dimension of 2.1. Furthermore, based on two-dimensional pancreatic sections of human autopsies, we found that the distribution of human islets also follows a universal power law with a fractal dimension of 1.5 in adult pancreata, which agrees with the value previously reported in smaller mammalian pancreas sections. Finally, we developed a self-avoiding growth model for the development of the islet distribution and found that the fractal nature of the spatial islet distribution may be associated with the self-avoidance in the branching process of vascularization in the pancreas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy