SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hadjadj Samy) ;lar1:(lu)"

Sökning: WFRF:(Hadjadj Samy) > Lunds universitet

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahluwalia, Tarunveer S., et al. (författare)
  • A novel rare CUBN variant and three additional genes identified in Europeans with and without diabetes : results from an exome-wide association study of albuminuria
  • 2019
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 62:2, s. 292-305
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Identifying rare coding variants associated with albuminuria may open new avenues for preventing chronic kidney disease and end-stage renal disease, which are highly prevalent in individuals with diabetes. Efforts to identify genetic susceptibility variants for albuminuria have so far been limited, with the majority of studies focusing on common variants. Methods: We performed an exome-wide association study to identify coding variants in a two-stage (discovery and replication) approach. Data from 33,985 individuals of European ancestry (15,872 with and 18,113 without diabetes) and 2605 Greenlanders were included. Results: We identified a rare (minor allele frequency [MAF]: 0.8%) missense (A1690V) variant in CUBN (rs141640975, β = 0.27, p = 1.3 × 10−11) associated with albuminuria as a continuous measure in the combined European meta-analysis. The presence of each rare allele of the variant was associated with a 6.4% increase in albuminuria. The rare CUBN variant had an effect that was three times stronger in individuals with type 2 diabetes compared with those without (pinteraction = 7.0 × 10−4, β with diabetes = 0.69, β without diabetes = 0.20) in the discovery meta-analysis. Gene-aggregate tests based on rare and common variants identified three additional genes associated with albuminuria (HES1, CDC73 and GRM5) after multiple testing correction (pBonferroni < 2.7 × 10−6). Conclusions/interpretation: The current study identifies a rare coding variant in the CUBN locus and other potential genes associated with albuminuria in individuals with and without diabetes. These genes have been implicated in renal and cardiovascular dysfunction. The findings provide new insights into the genetic architecture of albuminuria and highlight target genes and pathways for the prevention of diabetes-related kidney disease.
  •  
2.
  • Choquet, Helene, et al. (författare)
  • The T-381C SNP in BNP gene may be modestly associated with type 2 diabetes: an updated meta-analysis in 49 279 subjects
  • 2009
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 18:13, s. 2495-2501
  • Tidskriftsartikel (refereegranskat)abstract
    • A recent study reported an association between the brain natriuretic peptide (BNP) promoter T-381C polymorphism (rs198389) and protection against type 2 diabetes (T2D). As replication in several studies is mandatory to confirm genetic results, we analyzed the T-381C polymorphism in seven independent case-control cohorts and in 291 T2D-enriched pedigrees totalling 39 557 subjects of European origin. A meta-analysis of the seven case-control studies (n = 39 040) showed a nominal protective effect [odds ratio (OR) = 0.86 (0.79-0.94), P = 0.0006] of the CC genotype on T2D risk, consistent with the previous study. By combining all available data (n = 49 279), we further confirmed a modest contribution of the BNP T-381C polymorphism for protection against T2D [OR = 0.86 (0.80-0.92), P = 1.4 x 10(-5)]. Potential confounders such as gender, age, obesity status or family history were tested in 4335 T2D and 4179 normoglycemic subjects and they had no influence on T2D risk. This study provides further evidence of a modest contribution of the BNP T-381C polymorphism in protection against T2D and illustrates the difficulty of unambiguously proving modest-sized associations even with large sample sizes.
  •  
3.
  • Perry, John R. B., et al. (författare)
  • Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases
  • 2012
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m(2)) compared to obese cases (BMI >= 30 Kg/m(2)). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m(2)) or 4,123 obese cases (BMI >= 30 kg/m(2)), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4610 29, OR = 1.13 [95% CI 1.09-1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00-1.06]). A variant in HMG20A-previously identified in South Asians but not Europeans-was associated with type 2 diabetes in obese cases (P = 1.3 x 10(-8), OR= 1.11 [95% CI 1.07-1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02-1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10-1.17], P = 3.2 x 10(-14). This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05-1.08], P = 2.2 x 10(-16). This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.
  •  
4.
  • Rung, Johan, et al. (författare)
  • Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:10, s. 89-1110
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified common variants that only partially explain the genetic risk for type 2 diabetes (T2D). Using genome-wide association data from 1,376 French individuals, we identified 16,360 SNPs nominally associated with T2D and studied these SNPs in an independent sample of 4,977 French individuals. We then selected the 28 best hits for replication in 7,698 Danish subjects and identified 4 SNPs showing strong association with T2D, one of which (rs2943641, P = 9.3 x 10(-12), OR = 1.19) was located adjacent to the insulin receptor substrate 1 gene (IRS1). Unlike previously reported T2D risk loci, which predominantly associate with impaired beta cell function, the C allele of rs2943641 was associated with insulin resistance and hyperinsulinemia in 14,358 French, Danish and Finnish participants from population-based cohorts; this allele was also associated with reduced basal levels of IRS1 protein and decreased insulin induction of IRS1-associated phosphatidylinositol-3-OH kinase activity in human skeletal muscle biopsies.
  •  
5.
  • Sandholm, Niina, et al. (författare)
  • New susceptibility loci associated with kidney disease in type 1 diabetes
  • 2012
  • Ingår i: PLOS Genetics. - San Francisco, USA : Public Library of Science, PLOS. - 1553-7390 .- 1553-7404. ; 8:9, s. e1002921-
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genomewide association studies (GWAS) of T1D DN comprising similar to 2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 x 10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 x 10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-beta 1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 x 10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
  •  
6.
  • Sandholm, Niina, et al. (författare)
  • The genetic landscape of renal complications in type 1 diabetes
  • 2017
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673. ; 28:2, s. 557-574
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetes is the leading cause of ESRD. Despite evidence for a substantial heritability of diabetic kidney disease, efforts to identify genetic susceptibility variants have had limited success. We extended previous efforts in three dimensions, examining a more comprehensive set of genetic variants in larger numbers of subjects with type 1 diabetes characterized for a wider range of cross-sectional diabetic kidney disease phenotypes. In 2843 subjects, we estimated that the heritability of diabetic kidney disease was 35% (P=6.4310-3). Genome-wide association analysis and replication in 12,540 individuals identified no single variants reaching stringent levels of significance and, despite excellent power, provided little independent confirmation of previously published associatedvariants.Whole-exome sequencing in 997 subjects failed to identify any large-effect coding alleles of lower frequency influencing the risk of diabetic kidney disease. However, sets of alleles increasing body mass index (P=2.2310-5) and the risk of type 2 diabetes (P=6.1310-4) associated with the risk of diabetic kidney disease.Wealso found genome-wide genetic correlation between diabetic kidney disease and failure at smoking cessation (P=1.1310-4). Pathway analysis implicated ascorbate and aldarate metabolism (P=9.0310-6), and pentose and glucuronate interconversions (P=3.0310-6) in pathogenesis of diabetic kidney disease. These data provide further evidence for the role of genetic factors influencing diabetic kidney disease in those with type 1 diabetes and highlight some key pathways that may be responsible. Altogether these results reveal important biology behind the major cause of kidney disease.
  •  
7.
  • Uglebjerg, Nicoline, et al. (författare)
  • Four missense genetic variants in CUBN are associated with higher levels of eGFR in non-diabetes but not in diabetes mellitus or its subtypes : A genetic association study in Europeans
  • 2023
  • Ingår i: Frontiers in Endocrinology. - : Frontiers Media SA. - 1664-2392. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Rare genetic variants in the CUBN gene encoding the main albumin-transporter in the proximal tubule of the kidneys have previously been associated with microalbuminuria and higher urine albumin levels, also in diabetes. Sequencing studies in isolated proteinuria suggest that these variants might not affect kidney function, despite proteinuria. However, the relation of these CUBN missense variants to the estimated glomerular filtration rate (eGFR) is largely unexplored. We hereby broadly examine the associations between four CUBN missense variants and eGFRcreatinine in Europeans with Type 1 (T1D) and Type 2 Diabetes (T2D). Furthermore, we sought to deepen our understanding of these variants in a range of single- and aggregate- variant analyses of other kidney-related traits in individuals with and without diabetes mellitus. Methods: We carried out a genetic association-based linear regression analysis between four CUBN missense variants (rs141640975, rs144360241, rs45551835, rs1801239) and eGFRcreatinine (ml/min/1.73 m2, CKD-EPIcreatinine(2012), natural log-transformed) in populations with T1D (n ~ 3,588) or T2D (n ~ 31,155) from multiple European studies and in individuals without diabetes from UK Biobank (UKBB, n ~ 370,061) with replication in deCODE (n = 127,090). Summary results of the diabetes-group were meta-analyzed using the fixed-effect inverse-variance method. Results: Albeit we did not observe associations between eGFRcreatinine and CUBN in the diabetes-group, we found significant positive associations between the minor alleles of all four variants and eGFRcreatinine in the UKBB individuals without diabetes with rs141640975 being the strongest (Effect=0.02, PeGFR_creatinine=2.2 × 10-9). We replicated the findings for rs141640975 in the Icelandic non-diabetes population (Effect=0.026, PeGFR_creatinine=7.7 × 10-4). For rs141640975, the eGFRcreatinine-association showed significant interaction with albuminuria levels (normo-, micro-, and macroalbuminuria; p = 0.03). An aggregated genetic risk score (GRS) was associated with higher urine albumin levels and eGFRcreatinine. The rs141640975 variant was also associated with higher levels of eGFRcreatinine-cystatin C (ml/min/1.73 m2, CKD-EPI2021, natural log-transformed) and lower circulating cystatin C levels. Conclusions: The positive associations between the four CUBN missense variants and eGFR in a large population without diabetes suggests a pleiotropic role of CUBN as a novel eGFR-locus in addition to it being a known albuminuria-locus. Additional associations with diverse renal function measures (lower cystatin C and higher eGFRcreatinine-cystatin C levels) and a CUBN-focused GRS further suggests an important role of CUBN in the future personalization of chronic kidney disease management in people without diabetes.
  •  
8.
  • Voight, Benjamin F., et al. (författare)
  • Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:7, s. 579-589
  • Tidskriftsartikel (refereegranskat)abstract
    • By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P < 5 x 10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy