SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haigh C) "

Sökning: WFRF:(Haigh C)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Abe, K., et al. (författare)
  • J-PARC Neutrino Beamline Upgrade Technical Design Report
  • 2019
  • Rapport (refereegranskat)abstract
    • In this document, technical details of the upgrade plan of the J-PARC neutrino beamline for the extension of the T2K experiment are described. T2K has proposed to accumulate data corresponding to 2×1022 protons-on-target in the next decade, aiming at an initial observation of CP violation with 3σ or higher significance in the case of maximal CP violation. Methods to increase the neutrino beam intensity, which are necessary to achieve the proposed data increase, are described.
  •  
5.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
6.
  • Su, Zhan, et al. (författare)
  • Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus.
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Barrett's esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia, and it strongly predisposes to esophageal adenocarcinoma (EAC), a tumor with a very poor prognosis. We report the first genome-wide association study on Barrett's esophagus, comprising 1,852 UK cases and 5,172 UK controls in the discovery stage and 5,986 cases and 12,825 controls in the replication stage. Variants at two loci were associated with disease risk: chromosome 6p21, rs9257809 (Pcombined=4.09×10(-9); odds ratio (OR)=1.21, 95% confidence interval (CI)=1.13-1.28), within the major histocompatibility complex locus, and chromosome 16q24, rs9936833 (Pcombined=2.74×10(-10); OR=1.14, 95% CI=1.10-1.19), for which the closest protein-coding gene is FOXF1, which is implicated in esophageal development and structure. We found evidence that many common variants of small effect contribute to genetic susceptibility to Barrett's esophagus and that SNP alleles predisposing to obesity also increase risk for Barrett's esophagus.
  •  
7.
  •  
8.
  •  
9.
  • Jayakody, R.R.J.C., et al. (författare)
  • Role of the Built Environment in Rebuilding Displaced and Host Communities.
  • 2021
  • Ingår i: Multi-Hazard Early Warning and Disaster Risk Reduction.. - 9783030730031 ; , s. 69-92
  • Bokkapitel (refereegranskat)abstract
    • Disaster-induced and conflict-induced forced displacements areamong the biggest humanitarian and development challenges of the countriesaround the world in the 21st century. The increasing rate of the forced displacementputs significant pressure on the built environment which popularly includes thechallenges associated with delivering the essential goods and services, providingadequate and appropriate housing, and sufficient infrastructure to both host and displaced communities. However, apart from this physical aspect, the built environment has a significant role to play in rebuilding communities addressing the sociocultural, livelihood, and economic aspects and social cohesion between displacedand host communities. The understanding of this complex and multifaceted role ofthe built environment is an essential factor in resettlement planning in order to delivera successful relocation program ensuring the long-term satisfaction of the displacedand host communities. With the identification of this research need, the projecttitled REGARD (REbuild-inG AfteR Displacement) which is a EuropeanCommission funded collaborative research project, investigated the role of the builtenvironment in rebuilding communities following the disaster and conflict-inducedmass displacements.The method involved first reviewing the literature related to the field and conceptualising a framework based on literature synthesis. Data collection was initiated through the selection of participants using purposive sampling which include government officials, community representatives, social support networks, agency networks. A total of 37 interviews were carried out by the 3 partner countries; 12 inthe UK, 11 in Sweden, and 14 in Estonia. In the context of Sri Lanka 10 key informantinterviews and focus group discussions with community members were conducted covering both conflict-induced and disaster-induced displacement.Analysis revealed that the built environment has an instrumental role to play inrebuilding displaced and host communities by acting across six perspectives; constructing physical assets, stimulating economic assets, facilitating institutional assets, developing human capital assets, nurturing social assets, and protecting natural assets. This chapter presents the research findings across these six perspectives synthesising the role of the built environment (BE) in rebuilding communities and enhancing social cohesion between host and displaced communities. Finally, the chapter introduces a comprehensive framework of role of the built environment, summarising the research findings which can be used by the future academics, practitioners, and policymakers in the field of displacement resettlement planning.
  •  
10.
  • Hamza, Mo, et al. (författare)
  • A built environment perspective on post-disaster and conflict- induced displacement.
  • 2022
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Displacement is one of the most pressing challenges faced by the society today. REGARD (REbuildinGAfteR Displacement) is a collaborative research project co-funded by EU Erasmus+ programme, which set out to investigate the role of built environment in the context of displacement. The REGARD project launched in September 2018 with an aim to develop competencies in rebuilding communities following a disaster and conflict-induced mass displacements from the perspective of the built environment. The project consortium consists of five international universities in four different countries: University of Huddersfield, UK (project lead); Lund University, Sweden; University of Central Lancashire, UK; Tallinn University of Technology, Estonia; University of Colombo, Sri Lanka.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy