SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hall Per) ;pers:(Hall Per 1954)"

Sökning: WFRF:(Hall Per) > Hall Per 1954

  • Resultat 1-10 av 70
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bonaglia, Stefano, et al. (författare)
  • The fate of fixed nitrogen in marine sediments with low organic loading : an in situ study
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:2, s. 285-300
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the last decades, the impact of human activities on the global nitrogen (N) cycle has drastically increased. Consequently, benthic N cycling has mainly been studied in anthropogenically impacted estuaries and coasts, while in oligotrophic systems its understanding is still scarce. Here we report on benthic solute fluxes and on rates of denitrification, anammox, and dissimilatory nitrate reduction to ammonium (DNRA) studied by in situ incubations with benthic chamber landers during two cruises to the Gulf of Bothnia (GOB), a cold, oligotrophic basin located in the northern part of the Baltic Sea. Rates of N burial were also inferred to investigate the fate of fixed N in these sediments. Most of the total dissolved fixed nitrogen (TDN) diffusing to the water column was composed of organic N. Average rates of dinitrogen (N-2) production by denitrification and anammox (range: 53-360 mu mol Nm(-2) day(-1)) were comparable to those from Arctic and subarctic sediments worldwide (range: 34-344 mu mol Nm(-2) day(-1)). Anammox accounted for 18-26% of the total N2 production. Absence of free hydrogen sulfide and low concentrations of dissolved iron in sediment pore water suggested that denitrification and DNRA were driven by organic matter oxidation rather than chemolithotrophy. DNRA was as important as denitrification at a shallow, coastal station situated in the northern Bothnian Bay. At this pristine and fully oxygenated site, ammonium regeneration through DNRA contributed more than one-third to the TDN efflux and accounted, on average, for 45% of total nitrate reduction. At the offshore stations, the proportion of DNRA in relation to denitrification was lower (0-16% of total nitrate reduction). Median value and range of benthic DNRA rates from the GOB were comparable to those from the southern and central eutrophic Baltic Sea and other temperate estuaries and coasts in Europe. Therefore, our results contrast with the view that DNRA is negligible in cold and well-oxygenated sediments with low organic carbon loading. However, the mechanisms behind the variability in DNRA rates between our sites were not resolved. The GOB sediments were a major source (237 kt yr(-1), which corresponds to 184% of the external N load) of fixed N to the water column through recycling mechanisms. To our knowledge, our study is the first to document the simultaneous contribution of denitrification, DNRA, anammox, and TDN recycling combined with in situ measurements.
  •  
2.
  • Nilsson, Madeleine, et al. (författare)
  • Particle shuttling and oxidation capacity of sedimentary organic carbon on the Baltic Sea system scale
  • 2021
  • Ingår i: Marine Chemistry. - : Elsevier BV. - 0304-4203. ; 232
  • Tidskriftsartikel (refereegranskat)abstract
    • Continental margin sediments receive most of the particulate organic carbon (POC) deposited on the global seafloor, making them crucial locations in the carbon cycle. However, the complex environments in coastal oceans make it challenging to predict the fate of sedimentary organic carbon (OC) in these areas. Here we use data from 21 sites in the Baltic Sea, representing different biological and physiochemical regimes, to explore controls on sedimentary OC cycling. To this end, we combine in situ measured benthic fluxes of dissolved inorganic carbon (DIC; proxy for OC oxidation) with data on sediment properties. In the Gulf of Bothnia, low sedimentary OC oxidation capacities (yearly DIC flux divided by sedimentary POC inventory) were likely caused by a large fraction of terrestrial material in the POC pool, indicated by low sedimentary chlorophyll a content and high (> 10) carbon:nitrogen ratios. The highest OC oxidation capacities were measured at shallow, permanently oxic sites in the Baltic Proper, where bioturbation likely stimulates OC oxidation. The other sites in the Baltic Proper and all stations in the Gulf of Finland displayed increasing OC oxidation capacities with increasing normalised water depth (station depth divided by maximal depth in the basin). This pattern suggests that substantial quantities of POC are shuttled, through repeated cycles of resuspension-redeposition, from shallow erosion-transport (ET) areas to deep accumulation (A) areas. This interpretation was supported by decreasing sediment age and increasing sedimentary inventories of POC and chlorophyll a with normalised water depth. Our calculations indicate that particle shuttling redistributes almost half of the deposited export production from ET areas to A areas in the Baltic Proper, and that substantial amounts of terrestrial organic material are transported through particle shuttling to the deeper parts of the Gulf of Finland and Gulf of Bothnia. Depositional setting and POC origin can thus be central factors in predicting the distribution and fate of OC in coastal and shelf sediments.
  •  
3.
  • Ståhl, H., et al. (författare)
  • Factors influencing organic carbon recycling and burial in Skagerrak sediments
  • 2004
  • Ingår i: Journal of Marine Research. - : Journal of Marine Research/Yale. - 0022-2402 .- 1543-9542. ; 62:6, s. 867-907
  • Tidskriftsartikel (refereegranskat)abstract
    • Different factors influencing recycling and burial rates of organic carbon (OC) were investigated in the continental margin sediments of the Skagerrak (NE North Sea). Two different areas, one in the southern and one in the northeastern part of the Skagerrak were visited shortly after a spring bloom (March 1999) and in late summer (August 2000). Results suggested that: (1) Organic carbon oxidation rates (C-ox) (2.2-18 mmol Cm-2 d(-1)) were generally larger than the O-2 uptake rates (1.9-25 mmol m(-2) d(-1)). Both rates were measured in situ using a benthic lander. A mean apparent respiration ratio (C-ox:O-2corr) of 1.3 +/- 0.5 was found, indicating some long-term burial of reduced inorganic substances in these sediments. Measured O-2, fluxes increased linearly with increasing C-ox rates during the late summer cruise but not on the, early spring cruise, indicating a temporal uncoupling of anaerobic mineralization and reoxidation of reduced substances. (2) Dissolved organic carbon (DOC) fluxes (0.2-1.0 mmol Cm-2 d(-1)) constituted 3-10% of the C-ox rates and were positively correlated with the latter, implying that net DOC production rates were proportional to the overall sediment OC remineralization rates. (3) Chlorophyll a (Chl-a) concentrations in the sediment were significantly higher in early spring compared to late summer. The measured C-ox rates, but not O-2 fluxes, showed a strong positive correlation with the Chl-a inventories in the top 3 cm of the sediment. (4) Although no relationship was found between the benthic fluxes and the macrofaunal biomass in the chambers, total in situ measured dissolved inorganic carbon (C-T) fluxes were 1-5.4 times higher than diffusive mediated C-T fluxes, indicating that macrofauna have a significant impact on benthic exchange rates of OC remineralization products in Skagerrak sediments. (5) OC burial fluxes were generally higher in northeastern Skagerrak than in the southern part. The same pattern was observed for burial efficiencies, with annual means of similar to62% and similar to43% for the two areas respectively. (6) On a basin-wide scale, there was a significant positive linear correlation between the burial efficiencies and sediment accumulation rates. (7) The calculated particulate organic carbon (POC) deposition, from benthic flux and burial measurements, was only 24-78% of the sediment trap measured POC deposition, indicating a strong near-bottom lateral transport and resuspension of POC. (8) A larger fraction of the laterally advected material of lower quality seemed to settle in the northeastern Skagerrak rather than in the southern Skagerrak. (9) Skagerrak sediments, especially in the northeastern part, act as an efficient net sink for organic carbon, even in a global continental margin context.
  •  
4.
  • Viktorsson, Lena, 1980, et al. (författare)
  • Recycling and burial of phosphorus in sediments of an anoxic fjord - The By Fjord, western Sweden
  • 2013
  • Ingår i: Journal of Marine Research. - : Journal of Marine Research/Yale. - 0022-2402 .- 1543-9542. ; 71:5, s. 351-374
  • Tidskriftsartikel (refereegranskat)abstract
    • Recycling and burial of sediment phosphorus were studied in the By Fjord, western Sweden, during the years 2009 to 2010 using autonomous benthic landers and sediment sampling. The By Fjord is a small fjord with a shallow sill at its narrow mouth, which limits water exchange of the fjord’s basin water. The water in the basin is exchanged only every 3 to 5 years and the water below sill level is anoxic or sulfidic between water renewals. Five sites were examined in the By Fjord; three shallow sites above the sill level with oxic bottom waters and two deeper sites with anoxic bottom waters. Contents of sediment organic carbon and total nitrogen were higher at deep stations when compared to shallow stations, whereas the contents of sediment inorganic P was higher, and sediment organic P generally lower, at shallow than at deep stations both in surficial and buried sediment. One shallow oxic site and one deep anoxic site were also examined in the adjacent Koljo Fjord having similar characteristics as the By Fjord. In situ measurements of benthic fluxes of dissolved inorganic phosphorus (DIP) showed that the fluxes from sediments with oxic overlying water (0.05–0.23 mmol m−2 d−1) were much lower than fluxes from sediments with anoxic overlying water (1.25–2.26 mmol m−2 d−1). The DIP flux increased with increasing flux of dissolved inorganic carbon (DIC) not only at anoxic but also at oxic bottoms, which is different from observations in brackish water environments. The average ratio between the DIC and DIP fluxes at oxic bottoms was almost 10 times higher than the Redfield C:P ratio indicating partial immobilization of P in oxic sediments. In contrast, the C:P ratio in fluxes was on average 1.5 times lower than Redfield at the anoxic bottoms. The benthic fluxes from anoxic bottoms were P rich not only in relation to C, but also to N. The low C:P flux ratio at anoxic sites coincided with a ≈ 2.5 times higher than Redfield C:P ratio of organic matter in the sediment solid phase clearly suggesting preferential regeneration of P at anoxic bottoms. Burial of inorganic P was higher than organic P burial at both anoxic and oxic sites; the former made up 59 to 60% of the total P burial at the deep anoxic stations, and 80% at the main shallow oxic station. The burial efficiency for organic P at anoxic bottoms was estimated to be only 1 to 3%, which indicates extremely efficient recycling of deposited organic P under anoxic conditions in this fjord environment.
  •  
5.
  • Almroth, Elin, 1977, et al. (författare)
  • Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea
  • 2009
  • Ingår i: Continental Shelf Research. - : Elsevier BV. - 0278-4343. ; 29, s. 807-818
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of resuspension on benthic fluxes of oxygen (O2), ammonium (NH4+), nitrate (NO3−), phosphate (PO43−), silicate (Si(OH)4), dissolved inorganic carbon (DIC), total dissolved iron (Fe) and total dissolved manganese (Mn) was studied at three different stations in the Gulf of Finland (GoF), Baltic Sea during three cruises in June–July 2003, September 2004 and May 2005. The stations were situated on different bottom types in the western, central and eastern part, respectively, of the open GoF. The fluxes were measured in-situ using the autonomous Göteborg benthic lander. To simulate resuspension events, the stirring speed was increased in two of the four chambers of the lander after approximately half of the incubation time. The other two chambers were used as control chambers. Clear effects of resuspension were observed on the oxygen fluxes where an increase of the consumption was observed in 88% of the cases and on average with 59% (stdev=53). The NH4+ fluxes were affected in 50% of the cases (4 out of 8 incubations) at stations with low bottom water oxygen concentrations, but in no cases where the bottom water was oxygenated (0 out of 9 incubations). The NH4+ fluxes decreased by 26±27% in 2005 and by 114±19% in 2003. There was no clear effect of resuspension on the fluxes of any of the other solutes in this study. Thus, resuspension events did not play a significant role in release/uptake of NO3−, PO43−, Si(OH)4, DIC, Fe and Mn in GoF sediments. However, increased oxygen consumption as a result of resuspension may lead to spreading of anoxic/suboxic bottom water conditions, and thus indirectly to increased benthic release of phosphate, ammonium and iron.
  •  
6.
  • Almroth Rosell, Elin, 1977, et al. (författare)
  • A new approach to model oxygen dependent benthic phosphate fluxes in the Baltic Sea
  • 2015
  • Ingår i: Journal of Marine Systems. - : Elsevier BV. - 0924-7963 .- 1879-1573. ; 144, s. 127-141
  • Tidskriftsartikel (refereegranskat)abstract
    • The new approach to model the oxygen dependent phosphate release by implementing formulations of the oxygen penetration depths (OPD) and mineral bound inorganic phosphorus pools to the Swedish Coastal and Ocean Biogeochemical model (SCOBI) is described. The phosphorus dynamics and the oxygen concentrations in the Baltic proper sediment are studied during the period 1980-2008 using SCOBI coupled to the 3D-Rossby Centre Ocean model. Model data are compared to observations from monitoring stations and experiments. The impact from oxygen consumption on the determination of the OPD is found to be largest in the coastal zones where also the largest OPD are found. In the deep water the low oxygen concentrations mainly determine the OPD. Highest modelled release rate of phosphate from the sediment is about 59 x 10(3) t P year(-1) and is found on anoxic sediment at depths between 60-150 m, corresponding to 17% of the Baltic proper total area. The deposition of organic and inorganic phosphorus on sediments with oxic bottom water is larger than the release of phosphorus, about 43 x 10(3) t P year(-1). For anoxic bottoms the release of total phosphorus during the investigated period is larger than the deposition, about 19 x 10(3) t P year(-1). In total the net Baltic proper sediment sink is about 23.7 x 10(3) t P year(-1). The estimated phosphorus sink efficiency of the entire Baltic Sea is on average about 83% during the period.
  •  
7.
  • Almroth Rosell, Elin, 1977, et al. (författare)
  • Effects of simulated natural and massive resuspension on benthic oxygen, nutrient and dissolved inorganic carbon fluxes in Loch Creran, Scotland
  • 2012
  • Ingår i: Journal of Sea Research. - : Elsevier BV. - 1385-1101. ; 72, s. 38-48
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of repeated natural resuspension on benthic oxygen consumption and the effect of natural and massive resuspension on oxygen consumption and fluxes of phosphate, silicate, ammonium and dissolved inorganic carbon (DIC) were studied at two stations (S1 and S2) in a Scottish sea loch. Station S11 had organically enriched sediment and station S1 had lower organic content in the sediment. The fluxes were measured in situ using the Göteborg benthic lander. Natural resuspension, simulating resuspension events due to strong wind, waves or currents, and massive resuspension, simulating resuspension due to e.g. trawling or dredging, were created inside the incubation chambers by regulating the stirring of the incubated overlying water or by retracting and shaking the incubated sediment. Natural resuspension showed clear effects on the oxygen consumption at station S11, where it increased with an average of 12.8 (standard error (s.e.) 0.17) and 7.7 (s.e. 0.12) mmol m− 2 d− 1 during the first and second incubations, respectively. At station S1 there was no clear effect of natural resuspension on the oxygen consumption. Massive resuspension increased the oxygen consumption on S1 with an average of 608 (standard deviation (sd) 366) mmol m− 2 d− 1 and on S11 with an average of 2396 (sd 2265) mmol m− 2 d− 1. The fluxes of ammonium, phosphate and silicate were affected by the massive resuspension in 50, 14 and 33% of the chambers, respectively, on station S11. However, in the majority of the cases there were no effects on the nutrient and DIC fluxes of massive resuspension. The absolute concentrations of DIC, ammonium and silicate did however instantly increase with an average of 419 (sd 297), 48 (sd 27) and 6.9 (sd 3.7) μM, respectively, at S11 upon massive resuspension. The concentrations of phosphate decreased instantly with an average of 0.2 (sd 0.1) μM. On station S1 there were effects only on the ammonium and silicate concentrations, which increased with 0.8 (sd 0.3) and 1.13 (sd 0.36) μM, respectively. The large increase in oxygen consumption due to massive resuspension indicates that activities like e.g. trawling and dredging that take place in areas where water exchange occurs infrequently may lead to oxygen depletion in bottom water, which in turn might affect the ecological balance. Silicate, ammonium and DIC can be released due to massive resuspension and contribute to increased algal blooms in surface waters.
  •  
8.
  • Almroth Rosell, Elin, 1977, et al. (författare)
  • Transport of fresh and resuspended particulate organic material in the Baltic Sea — a model study
  • 2011
  • Ingår i: Journal of Marine Systems. - : Elsevier BV. - 0924-7963. ; 87:1, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • A fully coupled high-resolution 3-dimensional biogeochemical–physical ocean model including an empirical wave model was used to investigate the long-term average (1970–2007) distributions and transports of resuspended matter and other types of suspended organic matter in the Baltic Sea. Modelled bottom types were compared to observations and the results showed that the model successfully managed to capture the horizontal, as well as the vertical, distribution of the different bottom types: accumulation, transport and erosion bottoms. The model also captured well the nutrient element contents in the sediments. On average the largest contribution of resuspended organic carbon to the transport of total organic carbon is found at erosion and transport bottoms. Although the relative transport of resuspended organic carbon at deeper accumulation bottoms in general is low (< 10% of total), the central parts of the sub-basins act on average as sinks that import organic matter while the more shallow areas and the coastal regions acts as sources of organic carbon in the water column. This indicates that the particulate organic matter produced in erosion and transport areas might be kept in suspension long enough to be transported and settle in less energetic areas, i.e. on accumulation bottoms.
  •  
9.
  • Atamanchuk, Dariia, 1987, et al. (författare)
  • Continuous long-term observations of the carbonate system dynamics in the water column of a temperate fjord
  • 2015
  • Ingår i: Journal of Marine Systems. - : Elsevier BV. - 0924-7963. ; 148, s. 272-284
  • Tidskriftsartikel (refereegranskat)abstract
    • A cabled underwater observatory with more than 30 sensors delivering data in real-time was used to study the dynamics of the upper pelagic carbonate system of the Koljo Fjord, western Sweden, from September to April during two consecutive years (2011-2012 and 2012-2013). In the dynamic upper ca 15 m of the water column, salinity and temperature varied by up to 10 and 20 degrees C throughout the recorded periods, respectively. Partial pressure of CO2 (pCO(2)), measured with newly developed optical sensors (optodes) at three water depths (5, 9.6 and 12.6 m), varied between 210-940 mu atm, while O-2 varied between 80-470 mu mol/L. Redfield scaled graphs (Delta O-2:Delta DIC = -1.30), in which DIC was derived from pH or pCO(2) and salinity-derived alkalinity (A(Tsal)), and oxygen was measured by the sensors, were used as a tool to assess timing and occurrence of different processes influencing the dynamics of these parameters. Distinctive short-term variations of pCO(2) and O-2 were induced by either tidal oscillations, wind-driven water mass transport in the mixed layer or occasional transport of deep-basin water from below the thermo/halodine to the surface layer. Intensified air-sea gas exchange during short storm events was usually followed by stabilization of gas-related parameters in the water column, such as O-2 concentration and pCO(2), on longer time-scales characteristic for each parameter. Biological processes including organic matter degradation in late summer/autumn and primary production in early spring were responsible for slower and gradual seasonal changes of pCO(2) and O-2. Net primary production (NPP) rates in the Koljo Fjord were quantified to be 1.79 and 2.10 g C m(-2) during the spring bloom periods in 2012 and 2013, respectively, and ratios of 02 production:DIC consumption during the same periods were estimated to be -1.21 +/- 0.02 (at 5 m depth in 2013), -1.51 +/- 0.02 (at 12.6 m in 2012) and -1.95 +/- 0.05 (at 9.6 m in 2013). These ratios are discussed and compared to previously reported 02:C ratios during primary production. (C) 2015 Elsevier B.V. All rights reserved.
  •  
10.
  • Atamanchuk, Dariia, 1987, et al. (författare)
  • Detection of CO2 leakage from a simulated sub-seabed storage site using three different types of pCO2 sensors
  • 2015
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836. ; 38, s. 121-134
  • Tidskriftsartikel (refereegranskat)abstract
    • This work is focused on results from a recent controlled sub-seabed in situ carbon dioxide (CO2) releaseexperiment carried out during May–October 2012 in Ardmucknish Bay on the Scottish west coast. Threetypes of pCO2sensors (fluorescence, NDIR and ISFET-based technologies) were used in combination withmultiparameter instruments measuring oxygen, temperature, salinity and currents in the water columnat the epicentre of release and further away. It was shown that distribution of seafloor CO2 emissionsfeatures high spatial and temporal heterogeneity. The highest pCO2values (∼1250 atm) were detectedat low tide around a bubble stream and within centimetres distance from the seafloor. Further up in thewater column, 30–100 cm above the seabed, the gradients decreased, but continued to indicate elevatedpCO2at the epicentre of release throughout the injection campaign with the peak values between 400and 740atm. High-frequency parallel measurements from two instruments placed within 1 m fromeach other, relocation of one of the instruments at the release site and 2D horizontal mapping of therelease and control sites confirmed a localized impact from CO2emissions. Observed effects on the watercolumn were temporary and post-injection recovery took <7 days.A multivariate statistical approach was used to recognize the periods when the system was dominatedby natural forcing with strong correlation between variation in pCO2and O2, and when it was influencedby purposefully released CO2.Use of a hydrodynamic circulation model, calibrated with in situ data, was crucial to establishingbackground conditions in this complex and dynamic shallow water system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 70
Typ av publikation
tidskriftsartikel (66)
konferensbidrag (3)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (65)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Tengberg, Anders, 19 ... (24)
Kononets, Mikhail Y, ... (19)
Hylén, Astrid, 1991 (11)
Bonaglia, Stefano (7)
Almroth Rosell, Elin ... (7)
visa fler...
Stigebrandt, Anders, ... (7)
Ekeroth, Nils (7)
Blomqvist, Sven (6)
Robertson, Elizabeth ... (6)
Ståhl, H. (5)
Molander, Sverker, 1 ... (4)
Bonaglia, Stefano, 1 ... (4)
Roos, Per (4)
Blanck, Hans, 1950 (4)
Rütting, Tobias, 197 ... (4)
Dahllöf, Ingela, 196 ... (4)
Marzocchi, Ugo (4)
Brunnegård, Jenny, 1 ... (4)
Nascimento, Francisc ... (3)
Hassellöv, Ida-Maja, ... (3)
Brüchert, Volker (3)
Sommer, S. (3)
Liljebladh, Bengt, 1 ... (3)
Atamanchuk, Dariia, ... (3)
Favali, Paolo (3)
Beranzoli, Laura (3)
Cannat, Mathilde (3)
Waldmann, Christoph (3)
Ekeroth, N. (3)
Broman, Elias (2)
Eriksson, Mats (2)
Danobeitia, Juan Jos ... (2)
Agrenius, Stefan, 19 ... (2)
Thamdrup, Bo (2)
Rahm, Lars (2)
Eilola, Kari (2)
Meier, H. E. Markus (2)
Apler, Anna (2)
Klemedtsson, Leif, 1 ... (2)
Sommer, Stefan (2)
Ståhl, Henrik (2)
Delory, Eric (2)
de Stigter, Henko (2)
Gillooly, Mick (2)
Grant, Fiona (2)
Lykousis, Vasilios (2)
RADULESCU, VLAD (2)
ROLIN, JEAN-FRANÇOIS (2)
Ruhl, Henry A. (2)
visa färre...
Lärosäte
Göteborgs universitet (70)
Stockholms universitet (17)
Chalmers tekniska högskola (15)
Linköpings universitet (4)
Lunds universitet (4)
Uppsala universitet (2)
visa fler...
Linnéuniversitetet (2)
Naturhistoriska riksmuseet (2)
Umeå universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (67)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (70)
Teknik (3)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy