SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hammarstrom L) ;pers:(Johansson O)"

Search: WFRF:(Hammarstrom L) > Johansson O

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Borgstrom, M., et al. (author)
  • Electron donor-acceptor dyads and triads based on tris(bipyridine)ruthenium(II) and benzoquinone : Synthesis, characterization, and photoinduced electron transfer reactions
  • 2003
  • In: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 42:17, s. 5173-5184
  • Journal article (peer-reviewed)abstract
    • Two electron donor-acceptor triads based on a benzoquinone acceptor linked to a light absorbing [Ru(bpy)(3)](2+) complex have been synthesized. In triad 6 (denoted Ru-II-BQ-Co-III), a [Co(bpy)(3)](3+) complex, a potential secondary acceptor, was linked to the quinone. In the other triad, 8 (denoted PTZ-Ru-II-BQ), a phenothiazine donor was linked to the ruthenium moiety. The corresponding dyads Ru-II-BQ (4) and PTZ-Ru-II (9) were prepared for comparison. Upon light excitation in the visible band of the ruthenium moiety, electron transfer to the quinone occurred with a rate constant k(1) = 5 x 10(9) s(-1) (tau(1) = 200 ps) in all the quinone containing complexes. Recombination to the ground state followed, with a rate constant k(b) similar to 4.5 x 10(8) s(-1) (tau(b) similar to 2.2 ns), for both Ru-II-BQ and Ru-II-BQ-Co-III with no indication of a charge shift to generate the reduced Coll moiety. In the PTZ-Ru-II-BQ triad, however, the initial charge separation was followed by a rapid (k > 5 x 10(9) s(-1)) electron transfer from the phenothiazine moiety to give the fairly long-lived PTZ(.+)-Ru-II-BQ(.-) state (tau = 80 ns) in unusually high yield for a [Ru(bPY)(3)](2+)- based triad (> 90%), that lies at DeltaGdegrees = 1.32 eV relative to the ground state. Unfortunately, this triad turned out to be rather photolabile. Interestingly, coupling between the oxidized PTZ(.+) and the BQ(.-) moieties seemed to occur. This discouraged further extension to incorporate more redox active units. Finally, in the dyad PTZ-Ru-II a reversible, near isoergonic electron transfer was observed on excitation. Thus, a quasiequilibrium was established with an observed time constant of 7 ns, with ca. 82% of the population in the PTZ-Ru-*(II) state and 18% in the PTZ(.+)Ru(II)(bpy(.-)) state. These states decayed in parallel with an observed lifetime of 90 ns. The initial electron transfer to form the PTZ(.+)-Ru-II(bpy(.-)) state was thus faster than what would have been inferred from the Ru-*(II) emission decay (tau = 90 ns). This result suggests that reports for related PTZ-Ru-II and PTZ-Ru-II-acceptor complexes in the literature might need to be reconsidered.
  •  
2.
  • Johansson, O., et al. (author)
  • Electron donor-acceptor dyads based on ruthenium(II) bipyridine and terpyridine complexes bound to naphthalenediimide
  • 2003
  • In: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 42:9, s. 2908-2918
  • Journal article (peer-reviewed)abstract
    • Two series of photosensitizer-electron acceptor complexes have been synthesized and fully characterized: ruthenium(11) tris(bipyridine) {[Ru-II(bpy)(2)(bpy-X-NDI)], where X = -CH2-, tolylene, or phenylene, bpy is 2,2'-bipyridine, and NDI is naphthalenediimide} and ruthenium(II) bis(terpyridine) {[Ru-II(Y-tpy)(tpy-X-NDI)], where Y = H or tolyl and X = tolylene or phenylene, and tpy = 2,2':6',2-terpyridine}. The complexes have been studied by cyclic and differential pulse voltammetry and by steady state and time-resolved absorption and emission techniques. Rates for forward and backward electron transfer have been investigated, following photoexcitation of the ruthenium(II) polypyridine moiety. The terpyridine complexes were only marginally affected by the linked diimide unit, and no electron transfer was observed. In the bipyridine complexes we achieved efficient charge separation. For the complexes containing a phenyl link between the ruthenium(II) and diimide moieties, our results suggest a biphasic forward electron-transfer reaction, in which 20% of the charge-separated state was formed via population of the naphthalenediimide triplet state.
  •  
3.
  • Johansson, O., et al. (author)
  • Intramolecular charge separation in a hydrogen bonded tyrosine-ruthenium(II)-naphthalene diimide triad
  • 2004
  • In: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1359-7345 .- 1364-548X. ; :2, s. 194-195, s. 194-195
  • Journal article (peer-reviewed)abstract
    • Long-lived charge-separated states in the ns to mus range were observed upon laser flash excitation of a donor-chromophore-acceptor triad based on tris(bipyridine) ruthenium(II) as photosensitizer, naphthalene diimide as acceptor; and a hydrogen bonded phenol as donor.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view