SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hansen Kurt) ;pers:(Hansen Torben)"

Search: WFRF:(Hansen Kurt) > Hansen Torben

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hansen, Aleksander L., et al. (author)
  • Birthweight is associated with clinical characteristics in people with recently diagnosed type 2 diabetes
  • 2023
  • In: Diabetologia. - 0012-186X. ; 66:9, s. 1680-1692
  • Journal article (peer-reviewed)abstract
    • Aims/hypothesis: Low birthweight is a risk factor for type 2 diabetes but it is unknown whether low birthweight is associated with distinct clinical characteristics at disease onset. We examined whether a lower or higher birthweight in type 2 diabetes is associated with clinically relevant characteristics at disease onset. Methods: Midwife records were traced for 6866 individuals with type 2 diabetes in the Danish Centre for Strategic Research in Type 2 Diabetes (DD2) cohort. Using a cross-sectional design, we assessed age at diagnosis, anthropomorphic measures, comorbidities, medications, metabolic variables and family history of type 2 diabetes in individuals with the lowest 25% of birthweight (<3000 g) and highest 25% of birthweight (>3700 g), compared with a birthweight of 3000–3700 g as reference, using log-binomial and Poisson regression. Continuous relationships across the entire birthweight spectrum were assessed with linear and restricted cubic spline regression. Weighted polygenic scores (PS) for type 2 diabetes and birthweight were calculated to assess the impact of genetic predispositions. Results: Each 1000 g decrease in birthweight was associated with a 3.3 year (95% CI 2.9, 3.8) younger age of diabetes onset, 1.5 kg/m2 (95% CI 1.2, 1.7) lower BMI and 3.9 cm (95% CI 3.3, 4.5) smaller waist circumference. Compared with the reference birthweight, a birthweight of <3000 g was associated with more overall comorbidity (prevalence ratio [PR] for Charlson Comorbidity Index Score ≥3 was 1.36 [95% CI 1.07, 1.73]), having a systolic BP ≥155 mmHg (PR 1.26 [95% CI 0.99, 1.59]), lower prevalence of diabetes-associated neurological disease, less likelihood of family history of type 2 diabetes, use of three or more glucose-lowering drugs (PR 1.33 [95% CI 1.06, 1.65]) and use of three or more antihypertensive drugs (PR 1.09 [95% CI 0.99, 1.20]). Clinically defined low birthweight (<2500 g) yielded stronger associations. Most associations between birthweight and clinical characteristics appeared linear, and a higher birthweight was associated with characteristics mirroring lower birthweight in opposite directions. Results were robust to adjustments for PS representing weighted genetic predisposition for type 2 diabetes and birthweight. Conclusion/interpretation: Despite younger age at diagnosis, and fewer individuals with obesity and family history of type 2 diabetes, a birthweight <3000 g was associated with more comorbidities, including a higher systolic BP, as well as with greater use of glucose-lowering and antihypertensive medications, in individuals with recently diagnosed type 2 diabetes.
  •  
2.
  • Mahajan, Anubha, et al. (author)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Journal article (peer-reviewed)abstract
    • We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
  •  
3.
  • Christensen, Diana Hedevang, et al. (author)
  • Type 2 diabetes classification : a data-driven cluster study of the Danish Centre for Strategic Research in Type 2 Diabetes (DD2) cohort
  • 2022
  • In: BMJ Open Diabetes Research and Care. - : BMJ. - 2052-4897. ; 10:2
  • Journal article (peer-reviewed)abstract
    • Introduction A Swedish data-driven cluster study identified four distinct type 2 diabetes (T2D) clusters, based on age at diagnosis, body mass index (BMI), hemoglobin A1c (HbA1c) level, and homeostatic model assessment 2 (HOMA2) estimates of insulin resistance and beta-cell function. A Danish study proposed three T2D phenotypes (insulinopenic, hyperinsulinemic, and classical) based on HOMA2 measures only. We examined these two new T2D classifications using the Danish Centre for Strategic Research in Type 2 Diabetes cohort. Research design and methods In 3529 individuals, we first performed a k-means cluster analysis with a forced k-value of four to replicate the Swedish clusters: severe insulin deficient (SIDD), severe insulin resistant (SIRD), mild age-related (MARD), and mild obesity-related (MOD) diabetes. Next, we did an analysis open to alternative k-values (ie, data determined the optimal number of clusters). Finally, we compared the data-driven clusters with the three Danish phenotypes. Results Compared with the Swedish findings, the replicated Danish SIDD cluster included patients with lower mean HbA1c (86 mmol/mol vs 101 mmol/mol), and the Danish MOD cluster patients were less obese (mean BMI 32 kg/m 2 vs 36 kg/m 2). Our data-driven alternative k-value analysis suggested the optimal number of T2D clusters in our data to be three, rather than four. When comparing the four replicated Swedish clusters with the three proposed Danish phenotypes, 81%, 79%, and 69% of the SIDD, MOD, and MARD patients, respectively, fitted the classical T2D phenotype, whereas 70% of SIRD patients fitted the hyperinsulinemic phenotype. Among the three alternative data-driven clusters, 60% of patients in the most insulin-resistant cluster constituted 76% of patients with a hyperinsulinemic phenotype. Conclusion Different HOMA2-based approaches did not classify patients with T2D in a consistent manner. The T2D classes characterized by high insulin resistance/hyperinsulinemia appeared most distinct.
  •  
4.
  • Domazet, Sidsel L., et al. (author)
  • Low-grade inflammation in persons with recently diagnosed type 2 diabetes : The role of abdominal adiposity and putative mediators
  • In: Diabetes, Obesity and Metabolism. - 1462-8902.
  • Journal article (peer-reviewed)abstract
    • Aims: To determine the magnitude of the association between abdominal adiposity and low-grade inflammation in persons with recently diagnosed type 2 diabetes (T2D) and to determine to what extent this association is mediated by low physical activity level, hyperinsulinaemia, hyperglycaemia, dyslipidaemia, hypertension, and comorbidities. Materials and Methods: We measured waist circumference, clinical characteristics, and inflammatory markers i.e. tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and high-sensitivity C-reactive protein (hsCRP), in >9000 persons with recently diagnosed T2D. We applied multiple mediation analysis using structural equation modelling, with adjustment for age and sex. Results: Waist circumference as a proxy for abdominal adiposity was positively associated with all inflammatory markers. Hence, a one-standard deviation (SD) increase in waist circumference (SD = 15 cm) was associated with a 22%, 35%, and 46% SD increase in TNF-α (SD = 1.5 pg/mL), IL-6 (SD = 4.4 pg/mL), and hsCRP (SD = 6.9 mg/L), respectively. The level of hyperinsulinaemia assessed by fasting C-peptide was quantitatively the most important mediator, accounting for 9%–25% of the association between abdominal adiposity and low-grade inflammation, followed by low physical activity (5%–7%) and high triglyceride levels (2%–6%). Although mediation of adiposity-induced inflammation by greater comorbidity and higher glycated haemoglobin levels reached statistical significance, their impact was minor (1%–2%). Conclusions: In persons with recently diagnosed T2D, there was a clear association between abdominal adiposity and low-grade inflammation. A considerable part (20%–40%) of this association was mediated by other factors, with hyperinsulinaemia as a potentially important driver of adiposity-induced inflammation in T2D.
  •  
5.
  • Jackson, Victoria E, et al. (author)
  • Meta-analysis of exome array data identifies six novel genetic loci for lung function.
  • 2018
  • In: Wellcome open research. - : F1000 Research Ltd. - 2398-502X. ; 3
  • Journal article (peer-reviewed)abstract
    • Background: Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. Methods: We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV 1), forced vital capacity (FVC) and the ratio of FEV 1 to FVC (FEV 1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. Results: We identified significant (P<2·8x10 -7) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs ( SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including TYRO3 and PLAU. Conclusions: Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.
  •  
6.
  • Kristensen, Frederik Pagh Bredahl, et al. (author)
  • The Prevalence of Polyneuropathy in Type 2 Diabetes Subgroups Based on HOMA2 Indices of b-Cell Function and Insulin Sensitivity
  • 2023
  • In: Diabetes Care. - 0149-5992. ; 46:8, s. 1546-1555
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE Metabolic syndrome components may cumulatively increase the risk of diabetic polyneuropathy (DPN) in type 2 diabetes mellitus (T2DM) patients, driven by insulin resistance and hyperinsulinemia. We investigated the prevalence of DPN in three T2DM subgroups based on indices of b-cell function and insulin sensitivity. RESEARCH DESIGN AND METHODS We estimated b-cell function (HOMA2-B) and insulin sensitivity (HOMA2-S) in 4,388 Danish patients with newly diagnosed T2DM. Patients were categorized into subgroups of hyperinsulinemic (high HOMA2-B, low HOMA2-S), classical (low HOMA2-B, low HOMA2-S), and insulinopenic (low HOMA2-B, high HOMA2-S) T2DM. After a median follow-up of 3 years, patients filled the Michigan Neuropathy Screening Instrument questionnaire (MNSIq) to identify DPN (score ‡ 4). We used Poisson regression to calculate adjusted prevalence ratios (PRs) for DPN, and spline models to examine the association with HOMA2-B and HOMA2-S. RESULTS A total of 3,397 (77%) patients filled in the MNSIq. The prevalence of DPN was 23% among hyperinsulinemic, 16% among classical, and 14% among insulinopenic pa-tients. After adjusting for demographics, diabetes duration and therapy, lifestyle behaviors, and metabolic syndrome components (waist circumference, triglycer-ides, HDL cholesterol, hypertension, and HbA1c), the PR of DPN was 1.35 (95% CI 1.15–1.57) for the hyperinsulinemic compared with the classical patients. In spline analyses, we observed a linear relation of higher DPN prevalence with increasing HOMA2-B, independent of both metabolic syndrome components and HOMA2-S. CONCLUSIONS Hyperinsulinemia marked by high HOMA2-B is likely an important risk factor for DPN beyond metabolic syndrome components and insulin resistance. This should be considered when developing interventions to prevent DPN.
  •  
7.
  • Qi, Qibin, et al. (author)
  • FTO genetic variants, dietary intake and body mass index : insights from 177 330 individuals
  • 2014
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:25, s. 6961-6972
  • Journal article (peer-reviewed)abstract
    • FTO is the strongest known genetic susceptibility locus for obesity. Experimental studies in animals suggest the potential roles of FTO in regulating food intake. The interactive relation among FTO variants, dietary intake and body mass index (BMI) is complex and results from previous often small-scale studies in humans are highly inconsistent. We performed large-scale analyses based on data from 177 330 adults (154 439 Whites, 5776 African Americans and 17 115 Asians) from 40 studies to examine: (i) the association between the FTO-rs9939609 variant (or a proxy single-nucleotide polymorphism) and total energy and macronutrient intake and (ii) the interaction between the FTO variant and dietary intake on BMI. The minor allele (A-allele) of the FTO-rs9939609 variant was associated with higher BMI in Whites (effect per allele = 0.34 [0.31, 0.37] kg/m(2), P = 1.9 × 10(-105)), and all participants (0.30 [0.30, 0.35] kg/m(2), P = 3.6 × 10(-107)). The BMI-increasing allele of the FTO variant showed a significant association with higher dietary protein intake (effect per allele = 0.08 [0.06, 0.10] %, P = 2.4 × 10(-16)), and relative weak associations with lower total energy intake (-6.4 [-10.1, -2.6] kcal/day, P = 0.001) and lower dietary carbohydrate intake (-0.07 [-0.11, -0.02] %, P = 0.004). The associations with protein (P = 7.5 × 10(-9)) and total energy (P = 0.002) were attenuated but remained significant after adjustment for BMI. We did not find significant interactions between the FTO variant and dietary intake of total energy, protein, carbohydrate or fat on BMI. Our findings suggest a positive association between the BMI-increasing allele of FTO variant and higher dietary protein intake and offer insight into potential link between FTO, dietary protein intake and adiposity.
  •  
8.
  • Tobias, Deirdre K, et al. (author)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • In: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Research review (peer-reviewed)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
9.
  • Williamson, Alice, et al. (author)
  • Genome-wide association study and functional characterization identifies candidate genes for insulin-stimulated glucose uptake
  • 2023
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 55:6, s. 973-983
  • Journal article (peer-reviewed)abstract
    • Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in >55,000 participants from three ancestry groups. We identified ten new loci (P < 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view