SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansson Oskar) ;pers:(Insel Philip S.)"

Sökning: WFRF:(Hansson Oskar) > Insel Philip S.

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berron, David, et al. (författare)
  • Early stages of tau pathology and its associations with functional connectivity, atrophy and memory
  • 2021
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144:9, s. 2771-2783
  • Tidskriftsartikel (refereegranskat)abstract
    • In Alzheimer's disease, post-mortem studies have shown that the first cortical site where neurofibrillary tangles appear is the transentorhinal region, a subregion within the medial temporal lobe that largely overlaps with Brodmann area 35, and the entorhinal cortex. Here we used tau-PET imaging to investigate the sequence of tau pathology progression within the human medial temporal lobe and across regions in the posterior-medial system. Our objective was to study how medial temporal tau is related to functional connectivity, regional atrophy, and memory performance. We included 215 amyloid-β- cognitively unimpaired, 81 amyloid-β+ cognitively unimpaired and 87 amyloid-β+ individuals with mild cognitive impairment, who each underwent 18F-RO948 tau and 18F-flutemetamol amyloid PET imaging, structural T1-MRI and memory assessments as part of the Swedish BioFINDER-2 study. First, event-based modelling revealed that the entorhinal cortex and Brodmann area 35 show the earliest signs of tau accumulation followed by the anterior and posterior hippocampus, Brodmann area 36 and the parahippocampal cortex. In later stages, tau accumulation became abnormal in neocortical temporal and finally parietal brain regions. Second, in cognitively unimpaired individuals, increased tau load was related to local atrophy in the entorhinal cortex, Brodmann area 35 and the anterior hippocampus and tau load in several anterior medial temporal lobe subregions was associated with distant atrophy of the posterior hippocampus. Tau load, but not atrophy, in these regions was associated with lower memory performance. Further, tau-related reductions in functional connectivity in critical networks between the medial temporal lobe and regions in the posterior-medial system were associated with this early memory impairment. Finally, in patients with mild cognitive impairment, the association of tau load in the hippocampus with memory performance was partially mediated by posterior hippocampal atrophy. In summary, our findings highlight the progression of tau pathology across medial temporal lobe subregions and its disease stage-specific association with memory performance. While tau pathology might affect memory performance in cognitively unimpaired individuals via reduced functional connectivity in critical medial temporal lobe-cortical networks, memory impairment in mild cognitively impaired patients is associated with posterior hippocampal atrophy.
  •  
2.
  • Cullen, Nicholas C., et al. (författare)
  • Comparing progression biomarkers in clinical trials of early Alzheimer's disease
  • 2020
  • Ingår i: Annals of Clinical and Translational Neurology. - : Wiley. - 2328-9503. ; 7:9, s. 1661-1673
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To investigate the statistical power of plasma, imaging, and cognition biomarkers as Alzheimer's disease (AD) clinical trial outcome measures. Methods: Plasma neurofilament light, structural magnetic resonance imaging, and cognition were measured longitudinally in the Alzheimer's Disease Neuroimaging Initiative (ADNI) in control (amyloid PET or CSF A beta 42 negative [A beta-] with Clinical Dementia Rating scale [CDR] = 0; n = 330), preclinical AD (A beta + with CDR = 0; n = 218) and mild AD (A beta + with CDR = 0.5-1; n = 697) individuals. A statistical power analysis was performed across biomarkers and groups based on longitudinal mixed effects modeling and using several different clinical trial designs. Results: For a 30-month trial of preclinical AD, both the temporal composite and hippocampal volumes were superior to plasma neurofilament light and cognition. For an 18-month trial of mild AD, hippocampal volume was superior to all other biomarkers. Plasma neurofilament light became more effective with increased trial duration or sampling frequency. Imaging biomarkers were characterized by high slope and low within-subject variability, while plasma neurofilament light and cognition were characterized by higher within-subject variability. Interpretation: MRI measures had properties that made them preferable to cognition and pNFL as outcome measures in clinical trials of early AD, regardless of cognitive status. However, pNfL and cognition can still be effective depending on inclusion criteria, sampling frequency, and response to therapy. Future trials will help to understand how sensitive pNfL and MRI are to detect downstream effects on neurodegeneration of drugs targeting amyloid and tau pathology in AD.
  •  
3.
  • Hansson, Oskar, et al. (författare)
  • The genetic regulation of protein expression in cerebrospinal fluid
  • 2023
  • Ingår i: EMBO Molecular Medicine. - : EMBO. - 1757-4676 .- 1757-4684. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of the genetic regulation of cerebrospinal fluid (CSF) proteins may reveal pathways for treatment of neurological diseases. 398 proteins in CSF were measured in 1,591 participants from the BioFINDER study. Protein quantitative trait loci (pQTL) were identified as associations between genetic variants and proteins, with 176 pQTLs for 145 CSF proteins (P < 1.25 × 10−10, 117 cis-pQTLs and 59 trans-pQTLs). Ventricular volume (measured with brain magnetic resonance imaging) was a confounder for several pQTLs. pQTLs for CSF and plasma proteins were overall correlated, but CSF-specific pQTLs were also observed. Mendelian randomization analyses suggested causal roles for several proteins, for example, ApoE, CD33, and GRN in Alzheimer's disease, MMP-10 in preclinical Alzheimer's disease, SIGLEC9 in amyotrophic lateral sclerosis, and CD38, GPNMB, and ADAM15 in Parkinson's disease. CSF levels of GRN, MMP-10, and GPNMB were altered in Alzheimer's disease, preclinical Alzheimer's disease, and Parkinson's disease, respectively. These findings point to pathways to be explored for novel therapies. The novel finding that ventricular volume confounded pQTLs has implications for design of future studies of the genetic regulation of the CSF proteome.
  •  
4.
  • Insel, Philip S., et al. (författare)
  • Amyloid pathology in the progression to mild cognitive impairment
  • 2018
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 64, s. 76-84
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this study was to determine the cognitive and functional decline and development of brain injury in individuals progressing from preclinical (β-amyloid positive cognitively normal) to prodromal Alzheimer's disease (AD) (β-amyloid positive mild cognitive impairment [MCI]), and compare this with individuals who progress to MCI in the absence of significant amyloid pathology. Seventy-five cognitively healthy participants who progressed to MCI were followed for 4 years on average and up to 10 years. We tested effects of β-amyloid (Aβ) on measures of cognition, functional status, depressive symptoms, and brain structure and metabolism. Preclinical AD subjects showed greater cognitive decline in multiple domains and increased cerebrospinal fluid phosphorylated tau levels at baseline while Aβ-negative progressors showed increased rates of white matter hyperintensity accumulation and had a greater frequency of depressive symptoms at baseline. Aβ status did not influence patterns of brain atrophy, but preclinical AD subjects showed greater decline of brain metabolism than Aβ-negative progressors. Several unique features separate the transition from preclinical to prodromal AD from other causes of cognitive decline. These features may facilitate early diagnosis and treatment of AD, especially in clinical trials aimed at halting the progression from preclinical to prodromal AD.
  •  
5.
  • Insel, Philip S., et al. (författare)
  • Assessing risk for preclinical β-amyloid pathology with APOE, cognitive, and demographic information
  • 2016
  • Ingår i: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Wiley. - 2352-8729. ; 4, s. 76-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Clinical trials in Alzheimer's disease are aimed at early stages of disease, including preclinical Alzheimer's disease. The high cost and time required to screen large numbers of participants for Aβ pathology impede the development of novel drugs. This study's objective was to evaluate the extent to which inexpensive and easily obtainable information can reduce the number of screen failures by increasing the proportion of Aβ+ participants identified for screening. Methods We used random forest models to evaluate the positive predictive value of demographics, APOE, and longitudinal cognitive rates in the prediction of amyloid pathology, measured by florbetapir PET or cerebrospinal fluid. Results Predicting Aβ positivity with demographic, APOE, and cognitive information yielded a positive predictive value estimate of 0.65 (95% CI, 0.50–0.96), nearly a 60% increase over the reference Aβ+ prevalence in the cohort of 0.41. Conclusions By incorporating this procedure, clinical trial screening costs of 7500 USD per participant may be reduced by nearly 7 million USD total.
  •  
6.
  • Insel, Philip S., et al. (författare)
  • Association between Apolipoprotein e ϵ2 vs ϵ4, Age, and β-Amyloid in Adults without Cognitive Impairment
  • 2021
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:2, s. 229-229
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Although the most common recent approach in Alzheimer disease drug discovery is to directly target the β-amyloid (Aβ) pathway, the high prevalence of apolipoprotein E ϵ4 (APOE ϵ4) in Alzheimer disease and the ease of identifying ϵ4 carriers make the APOE genotype and its corresponding protein (apoE) an appealing therapeutic target to slow Aβ accumulation. Objective: To determine whether the ϵ2 allele is protective against Aβ accumulation in the presence of the ϵ4 allele and evaluate how age and the APOE genotype are associated with emerging Aβ accumulation and cognitive dysfunction. Design, Setting, and Participants: This cross-sectional study used screening data from the Anti-Amyloid Treatment in Asymptomatic Alzheimer Disease Study (A4 Study) collected from April 2014 to December 2017 and analyzed from November 2019 to July 2020. Of the 6943 participants who were a part of the multicenter clinical trial screening visit, 4432 were adults without cognitive impairment aged 65 to 85 years who completed a fluorine 18-labeled (18F)-florbetapir positron emission tomography scan, had APOE genotype information, and had a Clinical Dementia Rating of 0. Participants who were taking a prescription Alzheimer medication or had a current serious or unstable illness that could interfere with the study were excluded. Main Outcomes and Measures: Aβ pathology, measured by 18F-florbetapir positron emission tomography and cognition, measured by the Preclinical Alzheimer Cognitive Composite. Results: A total of 4432 participants were included (mean [SD] age, 71.3 [4.7] years; 2634 women [59.4%]), with a mean (SD) of 16.6 (2.8) years of education and 1512 (34.1%) with a positive Aβ level. APOE ϵ2 was associated with a reduction in both the overall (standardized uptake value ratio [SUVR], ϵ24, 1.11 [95% CI, 1.08-1.14]; ϵ34, 1.18 [95% CI, 1.17-1.19]) and the age-dependent level of Aβ in the presence of ϵ4, with Aβ levels in the APOE ϵ24 group (n = 115; ϵ24, 0.005 SUVR increase per year of age) increasing at less than half the rate with respect to increasing age compared with the APOE ϵ34 group (n = 1295; 0.012 SUVR increase per year of age; P =.04). The association between Aβ and decreasing Preclinical Alzheimer Cognitive Composite scores did not differ by APOE genotype, and the reduced performance on the Preclinical Alzheimer Cognitive Composite in APOE ϵ4 carriers compared with noncarriers was completely mediated by Aβ (unadjusted difference in composite scores between ϵ4 carriers and noncarriers = -0.084, P =.005; after adjusting for 18F-florbetapir = -0.006, P =.85; after adjusting for 18F-florbetapir and cardiovascular scores = -0.009, P =.78). Conclusions and Relevance: These findings suggest that the protective outcome of carrying an ϵ2 allele in the presence of an ϵ4 allele against Aβ accumulation is important for potential treatments that attempt to biochemically mimic the function of the ϵ2 allele in order to facilitate Aβ clearance in ϵ4 carriers. Such a treatment strategy is appealing, as ϵ4 carriers make up approximately two-thirds of patients with Alzheimer disease dementia. This strategy could represent an early treatment option, as many ϵ4 carriers begin to accumulate Aβ in early middle age..
  •  
7.
  • Insel, Philip S., et al. (författare)
  • Cognitive and functional changes associated with Aβ pathology and the progression to mild cognitive impairment
  • 2016
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 48, s. 172-181
  • Tidskriftsartikel (refereegranskat)abstract
    • Cognitively-normal people with evidence of β-amyloid (Aβ) pathology and subtle cognitive dysfunction are believed to be at high risk for progression to mild cognitive impairment due to Alzheimer's disease (AD). Clinical trials in later stages of AD typically include a coprimary endpoint to demonstrate efficacy on both cognitive and functional assessments. Recent trials focus on cognitively-normal people, but functional decline has not been explored for trial designs in this group. The goal of this study was therefore to characterize cognitive and functional decline in (1) cognitively-normal people converting to mild cognitive impairment (MCI) and (2) cognitively-normal β-amyloid-positive (Aβ+) people. Specifically, we sought to identify and compare the cognitive and functional assessments and their weighted combinations that maximize the longitudinal decline specific to these 2 groups. We studied 68 people who converted from normal cognition to MCI and 70 nonconverters, as well as 137 Aβ+ and 210 β-amyloid-negative cognitively-normal people. We used bootstrap aggregation and cross-validated mixed-models to estimate the distribution of weights applied to cognitive and functional outcomes to form composites. We also evaluated best subset optimization. Using optimized composites, we estimated statistical power for a variety of clinical trial scenarios. Overall, 55.4% of cognitively-normal to MCI converters were Aβ+. Large gains in power estimates were obtained when requiring participants to have both subtle cognitive dysfunction and Aβ pathology compared with requiring Aβ pathology alone. Additional power resulted when including functional as well as cognitive outcomes as part of the composite. Composites formed by applying equal weights to all measures provided the highest estimates of cross-validated power, although similar to both continuous weight optimization and best subset optimization. Using a composite to detect a 30% slowing of decline, 80% power was obtained for predicted Aβ+ converters with 375 completers/arm for a 30-month trial using a combination of cognitive/ functional measures. In the Aβ+ group, power to approach levels suitable for a phase III clinical trial would require considerably larger sample sizes. Composites incorporating both cognitive and functional measures may substantially increase the power of a trial in a preclinical (Aβ+) AD population with subtle evidence of cognitive dysfunction.
  •  
8.
  • Insel, Philip S., et al. (författare)
  • Determining clinically meaningful decline in preclinical Alzheimer disease
  • 2019
  • Ingår i: Neurology. - 1526-632X. ; 93:4, s. 322-333
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To determine the time required for a preclinical Alzheimer disease population to decline in a meaningful way, use estimates of decline to update previous clinical trial design assumptions, and identify factors that modify β-amyloid (Aβ)-related decline. METHODS: In 1,120 cognitively unimpaired individuals from 3 international cohorts, we estimated the relationship between Aβ status and longitudinal changes across multiple cognitive domains and assessed interactions between Aβ and baseline factors. Power analyses were performed to explore sample size as a function of treatment effect. RESULTS: Cognitively unimpaired Aβ+ participants approach mild cognitive impairment (MCI) levels of performance 6 years after baseline, on average. Achieving 80% power in a simulated 4-year treatment trial, assuming a 25% treatment effect, required 2,000 participants/group. Multiple factors interacted with Aβ to predict cognitive decline; however, these findings were all cohort-specific. Despite design differences across the cohorts, with large sample sizes and sufficient follow-up time, the Aβ+ groups declined consistently on cognitive composite measures. CONCLUSIONS: A preclinical AD population declines to the cognitive performance of an early MCI population in 6 years. Slowing this rate of decline by 40%-50% delays clinically relevant impairment by 3 years-a potentially meaningful treatment effect. However, assuming a 40%-50% drug effect highlights the difficulties in preclinical AD trial design, as a more commonly assumed treatment effect of 25% results in a required sample size of 2,000/group. Designers of preclinical AD treatment trials need to prepare for larger and longer trials than are currently being considered. Interactions with Aβ status were inconsistent and not readily generalizable.
  •  
9.
  • Insel, Philip S., et al. (författare)
  • Genetic Moderation of the Association of β-Amyloid With Cognition and MRI Brain Structure in Alzheimer Disease
  • 2023
  • Ingår i: Neurology. - 0028-3878. ; 101:1, s. 20-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives: There is considerable heterogeneity in the association between increasing β-amyloid (Aβ) pathology and early cognitive dysfunction in preclinical Alzheimer disease (AD). At this stage, some individuals show no signs of cognitive dysfunction, while others show clear signs of decline. The factors explaining this heterogeneity are particularly important for understanding progression in AD but remain largely unknown. In this study, we examined an array of genetic variants that may influence the relationships among Aβ, brain structure, and cognitive performance in 2 large cohorts. Methods: In 2,953 cognitively unimpaired participants from the Anti-Amyloid Treatment in Asymptomatic Alzheimer disease (A4) study, interactions between genetic variants and 18F-Florbetapir PET standardized uptake value ratio (SUVR) to predict the Preclinical Alzheimer Cognitive Composite (PACC) were assessed. Genetic variants identified in the A4 study were evaluated in the Alzheimer Disease Neuroimaging Initiative (ADNI, N = 527) for their association with longitudinal cognition and brain atrophy in both cognitively unimpaired participants and those with mild cognitive impairment. Results: In the A4 study, 4 genetic variants significantly moderated the association between Aβ load and cognition. Minor alleles of 3 variants were associated with additional decreases in PACC scores with increasing Aβ SUVR (rs78021285, β = -2.29, SE = 0.40, pFDR = 0.02, nearest gene ARPP21; rs71567499, β = -2.16, SE = 0.38, pFDR = 0.02, nearest gene PPARD; and rs10974405, β = -1.68, SE = 0.29, pFDR = 0.02, nearest gene GLIS3). The minor allele of rs7825645 was associated with less decrease in PACC scores with increasing Aβ SUVR (β = 0.71, SE = 0.13, pFDR = 0.04, nearest gene FGF20). The genetic variant rs76366637, in linkage disequilibrium with rs78021285, was available in both the A4 and ADNI. In the A4, rs76366637 was strongly associated with reduced PACC scores with increasing Aβ SUVR (β = -1.01, SE = 0.21, t = -4.90, p < 0.001). In the ADNI, rs76366637 was associated with accelerated cognitive decline (χ2 = 15.3, p = 0.004) and atrophy over time (χ2 = 26.8, p < 0.001), with increasing Aβ SUVR. Discussion: Patterns of increased cognitive dysfunction and accelerated atrophy due to specific genetic variation may explain some of the heterogeneity in cognition in preclinical and prodromal AD. The genetic variant near ARPP21 associated with lower cognitive scores in the A4 and accelerated cognitive decline and brain atrophy in the ADNI may help to identify those at the highest risk of accelerated progression of AD.
  •  
10.
  • Insel, Philip S., et al. (författare)
  • The A4 study : β-amyloid and cognition in 4432 cognitively unimpaired adults
  • 2020
  • Ingår i: Annals of Clinical and Translational Neurology. - : Wiley. - 2328-9503. ; 7:5, s. 776-785
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To clarify the preclinical stage of Alzheimer’s disease by estimating when β-amyloid accumulation first becomes associated with changes in cognition. Methods: Here we studied a large group (N = 4432) of cognitively unimpaired individuals who were screened for inclusion in the A4 trial (age 65–85) to assess the effect of subthreshold levels of β-amyloid on cognition and to identify which cognitive domains first become affected. Results: β-amyloid accumulation was linked to significant cognitive dysfunction in cognitively unimpaired participants with subthreshold levels of β-amyloid in multiple measures of memory (Logical Memory Delayed Recall, P = 0.03; Free and Cued Selective Reminding Test, P < 0.001), the Preclinical Alzheimer’s Cognitive Composite (P = 0.01), and was marginally associated with decreased executive function (Digit Symbol Substitution, P = 0.07). Significantly, decreased cognitive scores were associated with suprathreshold levels of β-amyloid, across all measures (P < 0.05). The Free and Cued Selective Reminding Test, a list recall memory test, appeared most sensitive to β-amyloid -related decreases in average cognitive scores, outperforming all other cognitive domains, including the narrative recall memory test, Logical Memory. Interpretation: Clinical trials for cognitively unimpaired β-amyloid-positive individuals will include a large number of individuals where mechanisms downstream from β-amyloid pathology are already activated. These findings have implications for primary and secondary prevention of Alzheimer’s disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy