SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hansson Oskar) ;pers:(Mattsson Niklas)"

Sökning: WFRF:(Hansson Oskar) > Mattsson Niklas

  • Resultat 1-10 av 159
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bridel, Claire, et al. (författare)
  • Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology : A Systematic Review and Meta-analysis
  • 2019
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149 .- 2168-6157. ; 76:9, s. 1035-1048
  • Forskningsöversikt (refereegranskat)abstract
    • Importance  Neurofilament light protein (NfL) is elevated in cerebrospinal fluid (CSF) of a number of neurological conditions compared with healthy controls (HC) and is a candidate biomarker for neuroaxonal damage. The influence of age and sex is largely unknown, and levels across neurological disorders have not been compared systematically to date.Objectives  To assess the associations of age, sex, and diagnosis with NfL in CSF (cNfL) and to evaluate its potential in discriminating clinically similar conditions.Data Sources  PubMed was searched for studies published between January 1, 2006, and January 1, 2016, reporting cNfL levels (using the search terms neurofilament light and cerebrospinal fluid) in neurological or psychiatric conditions and/or in HC.Study Selection  Studies reporting NfL levels measured in lumbar CSF using a commercially available immunoassay, as well as age and sex.Data Extraction and Synthesis  Individual-level data were requested from study authors. Generalized linear mixed-effects models were used to estimate the fixed effects of age, sex, and diagnosis on log-transformed NfL levels, with cohort of origin modeled as a random intercept.Main Outcome and Measure  The cNfL levels adjusted for age and sex across diagnoses.Results  Data were collected for 10 059 individuals (mean [SD] age, 59.7 [18.8] years; 54.1% female). Thirty-five diagnoses were identified, including inflammatory diseases of the central nervous system (n = 2795), dementias and predementia stages (n = 4284), parkinsonian disorders (n = 984), and HC (n = 1332). The cNfL was elevated compared with HC in a majority of neurological conditions studied. Highest levels were observed in cognitively impaired HIV-positive individuals (iHIV), amyotrophic lateral sclerosis, frontotemporal dementia (FTD), and Huntington disease. In 33.3% of diagnoses, including HC, multiple sclerosis, Alzheimer disease (AD), and Parkinson disease (PD), cNfL was higher in men than women. The cNfL increased with age in HC and a majority of neurological conditions, although the association was strongest in HC. The cNfL overlapped in most clinically similar diagnoses except for FTD and iHIV, which segregated from other dementias, and PD, which segregated from atypical parkinsonian syndromes.Conclusions and Relevance  These data support the use of cNfL as a biomarker of neuroaxonal damage and indicate that age-specific and sex-specific (and in some cases disease-specific) reference values may be needed. The cNfL has potential to assist the differentiation of FTD from AD and PD from atypical parkinsonian syndromes.
  •  
2.
  • Skillbäck, Tobias, et al. (författare)
  • A novel quantification-driven proteomic strategy identifies an endogenous peptide of pleiotrophin as a new biomarker of Alzheimer's disease
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new, quantification-driven proteomic approach to identifying biomarkers. In contrast to the identification-driven approach, limited in scope to peptides that are identified by database searching in the first step, all MS data are considered to select biomarker candidates. The endopeptidome of cerebrospinal fluid from 40 Alzheimer's disease (AD) patients, 40 subjects with mild cognitive impairment, and 40 controls with subjective cognitive decline was analyzed using multiplex isobaric labeling. Spectral clustering was used to match MS/MS spectra. The top biomarker candidate cluster (215% higher in AD compared to controls, area under ROC curve = 0.96) was identified as a fragment of pleiotrophin located near the protein's C-terminus. Analysis of another cohort (n = 60 over four clinical groups) verified that the biomarker was increased in AD patients while no change in controls, Parkinson's disease or progressive supranuclear palsy was observed. The identification of the novel biomarker pleiotrophin 151-166 demonstrates that our quantification-driven proteomic approach is a promising method for biomarker discovery, which may be universally applicable in clinical proteomics.
  •  
3.
  • Ahmad, Shahzad, et al. (författare)
  • CDH6 and HAGH protein levels in plasma associate with Alzheimer’s disease in APOE ε4 carriers
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Many Alzheimer’s disease (AD) genes including Apolipoprotein E (APOE) are found to be expressed in blood-derived macrophages and thus may alter blood protein levels. We measured 91 neuro-proteins in plasma from 316 participants of the Rotterdam Study (incident AD = 161) using Proximity Extension Ligation assay. We studied the association of plasma proteins with AD in the overall sample and stratified by APOE. Findings from the Rotterdam study were replicated in 186 AD patients of the BioFINDER study. We further evaluated the correlation of these protein biomarkers with total tau (t-tau), phosphorylated tau (p-tau) and amyloid-beta (Aβ) 42 levels in cerebrospinal fluid (CSF) in the Amsterdam Dementia Cohort (N = 441). Finally, we conducted a genome-wide association study (GWAS) to identify the genetic variants determining the blood levels of AD-associated proteins. Plasma levels of the proteins, CDH6 (β = 0.638, P = 3.33 × 10−4) and HAGH (β = 0.481, P = 7.20 × 10−4), were significantly elevated in APOE ε4 carrier AD patients. The findings in the Rotterdam Study were replicated in the BioFINDER study for both CDH6 (β = 1.365, P = 3.97 × 10−3) and HAGH proteins (β = 0.506, P = 9.31 × 10−7) when comparing cases and controls in APOE ε4 carriers. In the CSF, CDH6 levels were positively correlated with t-tau and p-tau in the total sample as well as in APOE ε4 stratum (P < 1 × 10−3). The HAGH protein was not detected in CSF. GWAS of plasma CDH6 protein levels showed significant association with a cis-regulatory locus (rs111283466, P = 1.92 × 10−9). CDH6 protein is implicated in cell adhesion and synaptogenesis while HAGH protein is related to the oxidative stress pathway. Our findings suggest that these pathways may be altered during presymptomatic AD and that CDH6 and HAGH may be new blood-based biomarkers.
  •  
4.
  • Arvidsson, Ida, et al. (författare)
  • Comparing a pre-defined versus deep learning approach for extracting brain atrophy patterns to predict cognitive decline due to Alzheimer’s disease in patients with mild cognitive symptoms
  • 2024
  • Ingår i: Alzheimer's Research and Therapy. - 1758-9193. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Predicting future Alzheimer’s disease (AD)-related cognitive decline among individuals with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) is an important task for healthcare. Structural brain imaging as measured by magnetic resonance imaging (MRI) could potentially contribute when making such predictions. It is unclear if the predictive performance of MRI can be improved using entire brain images in deep learning (DL) models compared to using pre-defined brain regions. Methods: A cohort of 332 individuals with SCD/MCI were included from the Swedish BioFINDER-1 study. The goal was to predict longitudinal SCD/MCI-to-AD dementia progression and change in Mini-Mental State Examination (MMSE) over four years. Four models were evaluated using different predictors: (1) clinical data only, including demographics, cognitive tests and APOE ε4 status, (2) clinical data plus hippocampal volume, (3) clinical data plus all regional MRI gray matter volumes (N = 68) extracted using FreeSurfer software, (4) a DL model trained using multi-task learning with MRI images, Jacobian determinant images and baseline cognition as input. A double cross-validation scheme, with five test folds and for each of those ten validation folds, was used. External evaluation was performed on part of the ADNI dataset, including 108 patients. Mann-Whitney U-test was used to determine statistically significant differences in performance, with p-values less than 0.05 considered significant. Results: In the BioFINDER cohort, 109 patients (33%) progressed to AD dementia. The performance of the clinical data model for prediction of progression to AD dementia was area under the curve (AUC) = 0.85 and four-year cognitive decline was R2 = 0.14. The performance was improved for both outcomes when adding hippocampal volume (AUC = 0.86, R2 = 0.16). Adding FreeSurfer brain regions improved prediction of four-year cognitive decline but not progression to AD (AUC = 0.83, R2 = 0.17), while the DL model worsened the performance for both outcomes (AUC = 0.84, R2 = 0.08). A sensitivity analysis showed that the Jacobian determinant image was more informative than the MRI image, but that performance was maximized when both were included. In the external evaluation cohort from ADNI, 23 patients (21%) progressed to AD dementia. The results for predicted progression to AD dementia were similar to the results for the BioFINDER test data, while the performance for the cognitive decline was deteriorated. Conclusions: The DL model did not significantly improve the prediction of clinical disease progression in AD, compared to regression models with a single pre-defined brain region.
  •  
5.
  • Ashton, Nicholas J., et al. (författare)
  • Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer's trial selection and disease monitoring.
  • 2022
  • Ingår i: Nature medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 28:12, s. 2555-2562
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood biomarkers indicative of Alzheimer's disease (AD) pathology are altered in both preclinical and symptomatic stages of the disease. Distinctive biomarkers may be optimal for the identification of AD pathology or monitoring of disease progression. Blood biomarkers that correlate with changes in cognition and atrophy during the course of the disease could be used in clinical trials to identify successful interventions and thereby accelerate the development of efficient therapies. When disease-modifying treatments become approved for use, efficient blood-based biomarkers might also inform on treatment implementation and management in clinical practice. In the BioFINDER-1 cohort, plasma phosphorylated (p)-tau231 and amyloid-β42/40 ratio were more changed at lower thresholds of amyloid pathology. Longitudinally, however, only p-tau217 demonstrated marked amyloid-dependent changes over 4-6 years in both preclinical and symptomatic stages of the disease, with no such changes observed in p-tau231, p-tau181, amyloid-β42/40, glial acidic fibrillary protein or neurofilament light. Only longitudinal increases of p-tau217 were also associated with clinical deterioration and brain atrophy in preclinical AD. The selective longitudinal increase of p-tau217 and its associations with cognitive decline and atrophy was confirmed in an independent cohort (Wisconsin Registry for Alzheimer's Prevention). These findings support the differential association of plasma biomarkers with disease development and strongly highlight p-tau217 as a surrogate marker of disease progression in preclinical and prodromal AD, with impact for the development of new disease-modifying treatments.
  •  
6.
  • Barthélemy, Nicolas R, et al. (författare)
  • Highly Accurate Blood Test for Alzheimer's Disease Comparable or Superior to Clinical CSF Tests
  • Ingår i: Nature Medicine. - 1546-170X.
  • Tidskriftsartikel (refereegranskat)abstract
    • With the emergence of Alzheimer's disease (AD) disease-modifying therapies, identifying patients who could benefit from these treatments becomes critical. We evaluated whether a precise blood test could perform as well as established cerebrospinal fluid (CSF) tests in detecting amyloid-β (Aβ) plaques and tau tangles. Plasma %p-tau217 (ratio of phosporylated-tau217 to non-phosphorylated tau) was analyzed by mass spectrometry in the Swedish BioFINDER-2 cohort (n=1,422) and the US Knight ADRC cohort (n=337). Matched CSF samples were analyzed with clinically used and FDA-approved automated immunoassays for Aβ42/40 and p-tau181/Aβ42. The primary and secondary outcomes were detection of brain Aβ or tau pathology, respectively, using PET imaging as the reference standard. Main analyses were focused on individuals with cognitive impairment (mild cognitive impairment and mild dementia), which is the target population for available disease-modifying treatments. Plasma %p-tau217 was clinically equivalent to FDA-approved CSF tests in classifying Aβ PET status, with an area-under-the-curve (AUC) for both between 0.95-0.97. Plasma %p-tau217 was generally superior to CSF tests in classification of tau-PET with AUCs of 0.95-0.98. In cognitively impaired sub-cohorts (BioFINDER-2: n=720; Knight ADRC: n=50), plasma %p-tau217 had an accuracy, positive predictive value and negative predictive value of 89-90% for Aβ PET and 87-88% for tau-PET status, which was clinically equivalent to CSF tests, further improving to 95% using a two cut-off approach. Blood plasma %p-tau217 demonstrated performance clinically equivalent or superior to clinically used FDA-approved CSF tests in the detection of AD pathology. Use of high performance blood tests in clinical practice can improve access to accurate AD diagnosis and AD-specific treatments.
  •  
7.
  • Bergeron, David, et al. (författare)
  • Prevalence of amyloid-β pathology in distinct variants of primary progressive aphasia
  • 2018
  • Ingår i: Annals of Neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 84:5, s. 729-740
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To estimate the prevalence of amyloid positivity, defined by positron emission tomography (PET)/cerebrospinal fluid (CSF) biomarkers and/or neuropathological examination, in primary progressive aphasia (PPA) variants. METHODS: We conducted a meta-analysis with individual participant data from 1,251 patients diagnosed with PPA (including logopenic [lvPPA, n = 443], nonfluent [nfvPPA, n = 333], semantic [svPPA, n = 401], and mixed/unclassifiable [n = 74] variants of PPA) from 36 centers, with a measure of amyloid-β pathology (CSF [n = 600], PET [n = 366], and/or autopsy [n = 378]) available. The estimated prevalence of amyloid positivity according to PPA variant, age, and apolipoprotein E (ApoE) ε4 status was determined using generalized estimating equation models. RESULTS: Amyloid-β positivity was more prevalent in lvPPA (86%) than in nfvPPA (20%) or svPPA (16%; p
  •  
8.
  • Berron, David, et al. (författare)
  • Early stages of tau pathology and its associations with functional connectivity, atrophy and memory
  • 2021
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144:9, s. 2771-2783
  • Tidskriftsartikel (refereegranskat)abstract
    • In Alzheimer's disease, post-mortem studies have shown that the first cortical site where neurofibrillary tangles appear is the transentorhinal region, a subregion within the medial temporal lobe that largely overlaps with Brodmann area 35, and the entorhinal cortex. Here we used tau-PET imaging to investigate the sequence of tau pathology progression within the human medial temporal lobe and across regions in the posterior-medial system. Our objective was to study how medial temporal tau is related to functional connectivity, regional atrophy, and memory performance. We included 215 amyloid-β- cognitively unimpaired, 81 amyloid-β+ cognitively unimpaired and 87 amyloid-β+ individuals with mild cognitive impairment, who each underwent 18F-RO948 tau and 18F-flutemetamol amyloid PET imaging, structural T1-MRI and memory assessments as part of the Swedish BioFINDER-2 study. First, event-based modelling revealed that the entorhinal cortex and Brodmann area 35 show the earliest signs of tau accumulation followed by the anterior and posterior hippocampus, Brodmann area 36 and the parahippocampal cortex. In later stages, tau accumulation became abnormal in neocortical temporal and finally parietal brain regions. Second, in cognitively unimpaired individuals, increased tau load was related to local atrophy in the entorhinal cortex, Brodmann area 35 and the anterior hippocampus and tau load in several anterior medial temporal lobe subregions was associated with distant atrophy of the posterior hippocampus. Tau load, but not atrophy, in these regions was associated with lower memory performance. Further, tau-related reductions in functional connectivity in critical networks between the medial temporal lobe and regions in the posterior-medial system were associated with this early memory impairment. Finally, in patients with mild cognitive impairment, the association of tau load in the hippocampus with memory performance was partially mediated by posterior hippocampal atrophy. In summary, our findings highlight the progression of tau pathology across medial temporal lobe subregions and its disease stage-specific association with memory performance. While tau pathology might affect memory performance in cognitively unimpaired individuals via reduced functional connectivity in critical medial temporal lobe-cortical networks, memory impairment in mild cognitively impaired patients is associated with posterior hippocampal atrophy.
  •  
9.
  • Binette, Alexa Pichet, et al. (författare)
  • Amyloid-associated increases in soluble tau is a key driver in accumulation of tau aggregates and cognitive decline in early Alzheimer
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: For optimal design of anti-amyloid-β (Aβ) and anti-tau clinical trials, it is important to understand how Aβ and soluble phosphorylated tau (p-tau) relate to the accumulation of tau aggregates assessed with positron emission tomography (PET) and subsequent cognitive decline across the Alzheimer's disease (AD) continuum. Method: We included 327 participants from the Swedish BioFINDER-2 cohort with cerebrospinal fluid (CSF) p-tau217, Aβ-PET, longitudinal tau-PET, and longitudinal cognition. The main groups of interest were Aβ-positive non-demented participants and AD dementia patients (Table 1 and Figure 1), and analyses were conducted separately in each group. First, we investigated how soluble p-tau217 and regional Aβ-PET were associated with tau-PET rate of change across the 200 brain parcels from the Schaefer atlas. We also tested the mediating effect of p-tau217 between Aβ-PET and tau-PET change. Second, we investigated how soluble p-tau217 and tau-PET change related to change in cognition, and mediation between these variables. Result: In early AD stages (non-demented participants), increased concentration of soluble p-tau217 was the main driver of accumulation of insoluble tau aggregates across the brain (measured as tau-PET rate of change), beyond the effect of regional Aβ-PET and baseline tau-PET (Figure 2A-C). Further, averaged across all regions, soluble p-tau217 mediated 54% of the association between Aβ and tau aggregation (Figure 2D). Higher soluble p-tau217 concentrations were also associated with cognitive decline, which was mediated by faster increase of tau aggregates (Figure 3). Repeating the same analyses in the AD dementia group, results were different. In late stage of AD, when Aβ fibrils and soluble p-tau levels have plateaued, soluble p-tau217 was not associated with accumulation of tau aggregates beyond baseline tau-PET (Figure 4A), and cognitive decline was driven by the accumulation rate of insoluble tau aggregates and not soluble p-tau217 (Figure 4B-C). Conclusion: Soluble p-tau is a main driver of tau aggregation and future cognitive decline in earlier stages of AD, whereas tau aggregation accumulation is more likely an important driver of disease in later stages. Overall, our data suggest that therapeutic approaches reducing soluble p-tau levels might be most favorable in early AD.
  •  
10.
  • Bjurstrom, M. F., et al. (författare)
  • Decreased pain sensitivity and alterations of cerebrospinal fluid and plasma inflammatory mediators after total hip arthroplasty in patients with disabling osteoarthritis
  • 2022
  • Ingår i: Pain Pract. - : Wiley. - 1533-2500 .- 1530-7085. ; 22:1, s. 66-82
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Proinflammatory mechanisms are implicated in pain states. Recent research indicates that patients with osteoarthritis (OA) with signs of central sensitization exhibit elevated cerebrospinal fluid (CSF) levels of interferon gamma-induced protein 10 (IP-10), Fms-related tyrosine kinase 1 (Flt-1), and monocyte chemoattractant protein 1 (MCP-1). METHODS: The current prospective cohort study, including 15 patients with OA, primarily aimed to evaluate associations among alterations in CSF IP-10, Flt-1, MCP-1, and pain sensitization following total hip arthroplasty (THA). Participants provided CSF and blood samples for analysis of 10 proinflammatory mediators, and underwent detailed clinical examination and quantitative sensory testing, immediately preoperative and 18 months after surgery. RESULTS: Neurophysiological measures of pain showed markedly reduced pain sensitivity long-term postoperative. Increases in remote site pressure pain detection thresholds (PPDTs) and decreased temporal summation indicated partial resolution of previous central sensitization. Compared to preoperative, CSF concentrations of IP-10 were increased (p = 0.041), whereas neither Flt-1 (p = 0.112) nor MCP-1 levels changed (p = 0.650). Compared to preoperative, plasma concentrations of IP-10 were increased (p = 0.006), whereas interleukin (IL)-8 was decreased (p = 0.023). Subjects who exhibited increases in arm PPDTs above median showed greater increases in CSF IP-10 compared to those with PPDT increases below median (p = 0.028). Analyses of plasma IP-10 and IL-8 indicated higher levels of peripheral inflammation were linked to decreased pressure pain thresholds (unadjusted beta = -0.79, p = 0.006, and beta = -118.1, p = 0.014, respectively). CONCLUSIONS: THA leads to long-term decreases in pain sensitivity, indicative of resolution of sensitization processes. Changes in CSF and plasma levels of IP-10, and plasma IL-8, may be associated with altered pain phenotype.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 159
Typ av publikation
tidskriftsartikel (151)
konferensbidrag (3)
forskningsöversikt (3)
annan publikation (2)
Typ av innehåll
refereegranskat (156)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Hansson, Oskar (159)
Mattsson-Carlgren, N ... (95)
Palmqvist, Sebastian (88)
Stomrud, Erik (83)
Janelidze, Shorena (67)
Blennow, Kaj, 1958 (50)
visa fler...
Zetterberg, Henrik, ... (47)
Ossenkoppele, Rik (37)
Smith, Ruben (37)
Strandberg, Olof (36)
Blennow, Kaj (24)
Leuzy, Antoine (22)
Zetterberg, Henrik (22)
Mattsson, Niklas, 19 ... (19)
Wallin, Anders, 1950 (16)
van Westen, Danielle (15)
Ashton, Nicholas J. (12)
Cullen, Nicholas C (12)
Dage, Jeffrey L. (11)
Scheltens, Philip (10)
Rabinovici, Gil D (10)
Minthon, Lennart (9)
Svensson, Johan, 196 ... (9)
Teunissen, Charlotte ... (9)
Jögi, Jonas (9)
Andreasson, Ulf, 196 ... (9)
Binette, Alexa Piche ... (9)
van der Flier, Wiesj ... (8)
Johansson, Per (8)
Cullen, Nicholas (8)
La Joie, Renaud (8)
Hampel, Harald (8)
Aarsland, Dag (7)
Tsolaki, Magda (7)
Marcusson, Jan (7)
Pereira, Joana B (7)
Salvadó, Gemma (7)
Ewers, Michael (7)
Rosa-Neto, Pedro (7)
Schöll, Michael, 198 ... (7)
Dage, J. L. (7)
Visser, Pieter Jelle (7)
Hall, Sara (7)
Jagust, William J. (6)
Morris, John C (6)
Frisoni, Giovanni B. (6)
Verbeek, Marcel M (6)
Tideman, Pontus (6)
Bateman, Randall J (6)
visa färre...
Lärosäte
Lunds universitet (152)
Göteborgs universitet (81)
Karolinska Institutet (27)
Uppsala universitet (8)
Linköpings universitet (6)
Örebro universitet (4)
visa fler...
Högskolan i Skövde (1)
visa färre...
Språk
Engelska (159)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (159)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy