SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hansson Oskar) srt2:(2020-2022);pers:(Ossenkoppele Rik)"

Search: WFRF:(Hansson Oskar) > (2020-2022) > Ossenkoppele Rik

  • Result 1-10 of 41
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Berron, David, et al. (author)
  • Medial temporal lobe connectivity and its associations with cognition in early Alzheimer's disease
  • 2020
  • In: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 143:3, s. 1233-1248
  • Journal article (peer-reviewed)abstract
    • Human episodic memory critically depends on subregions of the medial temporal lobe, which are part of functional brain systems such as the anterior-temporal and the posterior-medial system. Here we analysed how Alzheimer's pathology affects functional connectivity within these systems. Data from 256 amyloid-b-negative cognitively unimpaired, 103 amyloid-b-positive cognitively unimpaired, and 83 amyloid-b-positive individuals with mild cognitive impairment were analysed. Amyloid-b and tau pathology were measured using the CSF amyloid-b42/40 ratio and phosphorylated tau, respectively. We found that amyloid-b-positive cognitively unimpaired individuals were mainly characterized by decreased functional connectivity between the medial temporal lobe and regions in the anterior-temporal system, most prominently between left perirhinal/entorhinal cortices and medial prefrontal cortex. Furthermore, correlation analysis in this group revealed decreasing functional connectivity between bilateral perirhinal/entorhinal cortices, anterior hippocampus and posterior-medial regions with increasing levels of phosphorylated tau. The amyloid-b-positive individuals with mild cognitive impairment mostly exhibited reduced connectivity between the medial temporal lobe and posterior-medial regions, predominantly between the anterior hippocampus and posterior cingulate cortex. In addition, they showed hyperconnectivity within the medial temporal lobe and its immediate proximity. Lower medial temporal-cortical functional connectivity networks resulting from the group comparisons of cognitively unimpaired individuals were associated with reduced memory performance and more rapid longitudinal memory decline as shown by linear mixed-effects regression analysis. Finally, we found that reduced medial temporal-cortical connectivity in mildly cognitively impaired individuals was related to reduced entorhinal thickness and white matter integrity of the parahippocampal cingulum and the fornix. No such relationships were found in cognitively unimpaired individuals. In conclusion, our findings show that the earliest changes in preclinical Alzheimer's disease might involve decreased connectivity within the anterior-temporal system, and early changes in connectivity might be related to memory impairment, but not to structural changes. With disease progression and increased tau pathology, medial temporal functional connectivity with posterior-medial regions seems to be increasingly impaired. In individuals with mild cognitive impairment, reduced functional connectivity is associated with structural brain changes as well as the emergence of locally increased connectivity patterns. Thus, functional connectivity between the medial temporal lobe and the anterior-temporal and posterior-medial system could serve as stage-specific functional markers in early Alzheimer's disease.
  •  
2.
  • Binette, Alexa Pichet, et al. (author)
  • Amyloid-associated increases in soluble tau is a key driver in accumulation of tau aggregates and cognitive decline in early Alzheimer
  • 2022
  • In: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Journal article (peer-reviewed)abstract
    • Background: For optimal design of anti-amyloid-β (Aβ) and anti-tau clinical trials, it is important to understand how Aβ and soluble phosphorylated tau (p-tau) relate to the accumulation of tau aggregates assessed with positron emission tomography (PET) and subsequent cognitive decline across the Alzheimer's disease (AD) continuum. Method: We included 327 participants from the Swedish BioFINDER-2 cohort with cerebrospinal fluid (CSF) p-tau217, Aβ-PET, longitudinal tau-PET, and longitudinal cognition. The main groups of interest were Aβ-positive non-demented participants and AD dementia patients (Table 1 and Figure 1), and analyses were conducted separately in each group. First, we investigated how soluble p-tau217 and regional Aβ-PET were associated with tau-PET rate of change across the 200 brain parcels from the Schaefer atlas. We also tested the mediating effect of p-tau217 between Aβ-PET and tau-PET change. Second, we investigated how soluble p-tau217 and tau-PET change related to change in cognition, and mediation between these variables. Result: In early AD stages (non-demented participants), increased concentration of soluble p-tau217 was the main driver of accumulation of insoluble tau aggregates across the brain (measured as tau-PET rate of change), beyond the effect of regional Aβ-PET and baseline tau-PET (Figure 2A-C). Further, averaged across all regions, soluble p-tau217 mediated 54% of the association between Aβ and tau aggregation (Figure 2D). Higher soluble p-tau217 concentrations were also associated with cognitive decline, which was mediated by faster increase of tau aggregates (Figure 3). Repeating the same analyses in the AD dementia group, results were different. In late stage of AD, when Aβ fibrils and soluble p-tau levels have plateaued, soluble p-tau217 was not associated with accumulation of tau aggregates beyond baseline tau-PET (Figure 4A), and cognitive decline was driven by the accumulation rate of insoluble tau aggregates and not soluble p-tau217 (Figure 4B-C). Conclusion: Soluble p-tau is a main driver of tau aggregation and future cognitive decline in earlier stages of AD, whereas tau aggregation accumulation is more likely an important driver of disease in later stages. Overall, our data suggest that therapeutic approaches reducing soluble p-tau levels might be most favorable in early AD.
  •  
3.
  • Bischof, Gérard N., et al. (author)
  • Clinical validity of second-generation tau PET tracers as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework
  • 2021
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 48:7, s. 2110-2120
  • Research review (peer-reviewed)abstract
    • Purpose: In 2017, the Geneva Alzheimer’s disease (AD) strategic biomarker roadmap initiative proposed a framework of the systematic validation AD biomarkers to harmonize and accelerate their development and implementation in clinical practice. Here, we use this framework to examine the translatability of the second-generation tau PET tracers into the clinical context. Methods: All available literature was systematically searched based on a set of search terms that related independently to analytic validity (phases 1–2), clinical validity (phase 3–4), and clinical utility (phase 5). The progress on each of the phases was determined based on scientific criteria applied for each phase and coded as fully, partially, preliminary achieved or not achieved at all. Results: The validation of the second-generation tau PET tracers has successfully passed the analytical phase 1 of the strategic biomarker roadmap. Assay definition studies showed evidence on the superiority over first-generation tau PET tracers in terms of off-target binding. Studies have partially achieved the primary aim of the analytical validity stage (phase 2), and preliminary evidence has been provided for the assessment of covariates on PET signal retention. Studies investigating of the clinical validity in phases 3, 4, and 5 are still underway. Conclusion: The current literature provides overall preliminary evidence on the establishment of the second-generation tau PET tracers into the clinical context, thereby successfully addressing some methodological issues from the tau PET tracer of the first generation. Nevertheless, bigger cohort studies, longitudinal follow-up, and examination of diverse disease population are still needed to gauge their clinical validity.
  •  
4.
  • Boccardi, M., et al. (author)
  • The strategic biomarker roadmap for the validation of Alzheimer's diagnostic biomarkers: methodological update
  • 2021
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 48
  • Journal article (peer-reviewed)abstract
    • Background The 2017 Alzheimer's disease (AD) Strategic Biomarker Roadmap (SBR) structured the validation of AD diagnostic biomarkers into 5 phases, systematically assessing analytical validity (Phases 1-2), clinical validity (Phases 3-4), and clinical utility (Phase 5) through primary and secondary Aims. This framework allows to map knowledge gaps and research priorities, accelerating the route towards clinical implementation. Within an initiative aimed to assess the development of biomarkers of tau pathology, we revised this methodology consistently with progress in AD research. Methods We critically appraised the adequacy of the 2017 Biomarker Roadmap within current diagnostic frameworks, discussed updates at a workshop convening the Alzheimer's Association and 8 leading AD biomarker research groups, and detailed the methods to allow consistent assessment of aims achievement for tau and other AD diagnostic biomarkers. Results The 2020 update applies to all AD diagnostic biomarkers. In Phases 2-3, we admitted a greater variety of study designs (e.g., cross-sectional in addition to longitudinal) and reference standards (e.g., biomarker confirmation in addition to clinical progression) based on construct (in addition to criterion) validity. We structured a systematic data extraction to enable transparent and formal evidence assessment procedures. Finally, we have clarified issues that need to be addressed to generate data eligible to evidence-to-decision procedures. Discussion This revision allows for more versatile and precise assessment of existing evidence, keeps up with theoretical developments, and helps clinical researchers in producing evidence suitable for evidence-to-decision procedures. Compliance with this methodology is essential to implement AD biomarkers efficiently in clinical research and diagnostics.
  •  
5.
  • Chetelat, G., et al. (author)
  • Amyloid-PET and 18-F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias
  • 2020
  • In: Lancet Neurology. - 1474-4422 .- 1474-4465. ; 19:11, s. 951-962
  • Research review (peer-reviewed)abstract
    • Various biomarkers are available to support the diagnosis of neurodegenerative diseases in clinical and research settings. Among the molecular imaging biomarkers, amyloid-PET, which assesses brain amyloid deposition, and F-18-fluorodeoxyglucose (F-18-FDG) PET, which assesses glucose metabolism, provide valuable and complementary information. However, uncertainty remains regarding the optimal timepoint, combination, and an order in which these PET biomarkers should be used in diagnostic evaluations because conclusive evidence is missing. Following an expert panel discussion, we reached an agreement on the specific use of the individual biomarkers, based on available evidence and clinical expertise. We propose a diagnostic algorithm with optimal timepoints for these PET biomarkers, also taking into account evidence from other biomarkers, for early and differential diagnosis of neurodegenerative diseases that can lead to dementia. We propose three main diagnostic pathways with distinct biomarker sequences, in which amyloid-PET and F-18-FDG-PET are placed at different positions in the order of diagnostic evaluations, depending on clinical presentation. We hope that this algorithm can support diagnostic decision making in specialist clinical settings with access to these biomarkers and might stimulate further research towards optimal diagnostic strategies.
  •  
6.
  • Chiotis, Konstantinos, et al. (author)
  • Clinical validity of increased cortical binding of tau ligands of the THK family and PBB3 on PET as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework
  • 2021
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 48:7, s. 2086-2096
  • Research review (peer-reviewed)abstract
    • Purpose: The research community has focused on defining reliable biomarkers for the early detection of the pathological hallmarks of Alzheimer’s disease (AD). In 2017, the Geneva AD Biomarker Roadmap initiative adapted the framework for the systematic validation of oncological biomarkers to AD, with the aim to accelerate their development and implementation in clinical practice. The aim of this work was to assess the validation status of tau PET ligands of the THK family and PBB3 as imaging biomarkers for AD, based on the Biomarker Roadmap methodology. Methods: A panel of experts in AD biomarkers convened in November 2019 at a 2-day workshop in Geneva. The level of clinical validity of tau PET ligands of the THK family and PBB3 was assessed based on the 5-phase development framework before the meeting and discussed during the workshop. Results: PET radioligands of the THK family discriminate well between healthy controls and patients with AD dementia (phase 2; partly achieved) and recent evidence suggests an accurate diagnostic accuracy at the mild cognitive impairment (MCI) stage of the disease (phase 3; partly achieved). The phases 2 and 3 were considered not achieved for PBB3 since no evidence exists about the ligand’s diagnostic accuracy. Preliminary evidence exists about the secondary aims of each phase for all ligands. Conclusion: Much work remains for completing the aims of phases 2 and 3 and replicating the available evidence. However, it is unlikely that the validation process for these tracers will be completed, given the presence of off-target binding and the development of second-generation tracers with improved binding and pharmacokinetic properties.
  •  
7.
  • Franzmeier, Nicolai, et al. (author)
  • Earlier Alzheimer's disease onset is associated with a shift of tau pathology towards brain hubs which facilitates tau spreading
  • 2022
  • In: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Journal article (peer-reviewed)abstract
    • Background: In Alzheimer’s disease (AD), younger symptom onset is associated accelerated cognitive decline and tau spreading, yet the drivers of faster disease manifestation in patients with earlier symptom onset are unknown. Earlier symptom onset is associated with stronger tau pathology in fronto-parietal regions which typically harbor globally connected hubs that are central for cognition. Since tau spreads across connected regions, globally connected hubs may accelerate tau spreading due to their large number of connections to other brain regions. Thus, we hypothesized that a pattern shift of tau pathology towards globally connected brain hubs may facilitate tau spreading and earlier symptom manifestation in AD. Method: We included two independent samples with longitudinal Flortaucipir tau-PET covering the AD spectrum (ADNI: n(controls/AD-preclinical/AD-symptomatic)=93/60/89, BioFINDER, n(controls/AD-preclinical/AD-symptomatic)=16/16/25). In addition, we included resting-state fMRI from human connectome project participants (n=1000), applying a 200-ROI brain atlas to obtain a global connectivity map for assessing brain hubs (Fig.1A-D). Applying the same atlas to tau-PET we transformed SUVRs to tau positivities using a pre-established gaussian-mixture modeling approach (Fig.1E-F). By mapping tau-PET positivities to the fMRI-derived global connectivity map (Fig.1G-L), we assessed the degree to which subject specific tau-PET patterns were shifted towards globally connected hubs or non-hubs, while adjusting for global tau levels. Using linear regression, we then tested whether a stronger shift of tau towards hubs was associated with earlier symptom manifestation and faster longitudinal tau accumulation. Result: In symptomatic AD patients, younger age was associated with a stronger shift of tau-PET towards globally connected brain hubs (p[ADNI/BiOFINDER]=0.024/0.018, Fig.2A&B), and with higher global connectivity of epicenters with highest tau pathology (p[ADNI/BiOFINDER]<0.001/0.001, Fig.2C&D). In symptomatic AD, younger age (p[ADNI/BiOFINDER]=0.009/0.001) and a stronger shift of tau-PET towards hubs predicted faster subsequent tau accumulation (p[ADNI/BiOFINDER]=0.004/0.002), supporting the view that that hubs facilitate tau spreading (Fig.3). Further, a stronger shift of tau-PET towards globally connected brain hubs mediated the association between younger age and faster tau accumulation in symptomatic AD patients (p[ADNI/BiOFINDER]=0.039/0.046). Conclusion: Younger AD symptom onset is associated with stronger tau pathology in globally connected brain hubs, which facilitates faster tau spreading.
  •  
8.
  • Franzmeier, Nicolai, et al. (author)
  • Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • In Alzheimer’s diseases (AD), tau pathology is strongly associated with cognitive decline. Preclinical evidence suggests that tau spreads across connected neurons in an activity-dependent manner. Supporting this, cross-sectional AD studies show that tau deposition patterns resemble functional brain networks. However, whether higher functional connectivity is associated with higher rates of tau accumulation is unclear. Here, we combine resting-state fMRI with longitudinal tau-PET in two independent samples including 53 (ADNI) and 41 (BioFINDER) amyloid-biomarker defined AD subjects and 28 (ADNI) vs. 16 (BioFINDER) amyloid-negative healthy controls. In both samples, AD subjects show faster tau accumulation than controls. Second, in AD, higher fMRI-assessed connectivity between 400 regions of interest (ROIs) is associated with correlated tau-PET accumulation in corresponding ROIs. Third, we show that a model including baseline connectivity and tau-PET is associated with future tau-PET accumulation. Together, connectivity is associated with tau spread in AD, supporting the view of transneuronal tau propagation.
  •  
9.
  • Franzmeier, Nicolai, et al. (author)
  • Patient-centered connectivity-based prediction of tau pathology spread in Alzheimer's disease
  • 2020
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 6:48
  • Journal article (peer-reviewed)abstract
    • In Alzheimer's disease (AD), the Braak staging scheme suggests a stereotypical tau spreading pattern that does, however, not capture interindividual variability in tau deposition. This complicates the prediction of tau spreading, which may become critical for defining individualized tau-PET readouts in clinical trials. Since tau is assumed to spread throughout connected regions, we used functional connectivity to improve tau spreading predictions over Braak staging methods. We included two samples with longitudinal tau-PET from controls and AD patients. Cross-sectionally, we found connectivity of tau epicenters (i.e., regions with earliest tau) to predict estimated tau spreading sequences. Longitudinally, we found tau accumulation rates to correlate with connectivity strength to patient-specific tau epicenters. A connectivity-based, patient-centered tau spreading model improved the assessment of tau accumulation rates compared to Braak stage-specific readouts and reduced sample sizes by ~40% in simulated tau-targeting interventions. Thus, connectivity-based tau spreading models may show utility in clinical trials.
  •  
10.
  • Franzmeier, Nicolai, et al. (author)
  • The BIN1 rs744373 Alzheimer's disease risk SNP is associated with faster Aβ-associated tau accumulation and cognitive decline
  • 2022
  • In: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:1, s. 103-115
  • Journal article (peer-reviewed)abstract
    • Introduction: The BIN1 rs744373 single nucleotide polymorphism (SNP) is a key genetic risk locus for Alzheimer's disease (AD) associated with tau pathology. Because tau typically accumulates in response to amyloid beta (Aβ), we tested whether BIN1 rs744373 accelerates Aβ-related tau accumulation. Methods: We included two samples (Alzheimer's Disease Neuroimaging Initiative [ADNI], n = 153; Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably [BioFINDER], n = 63) with longitudinal 18F-Flortaucipir positron emission tomography (PET), Aβ biomarkers, and longitudinal cognitive assessments. We assessed whether BIN1 rs744373 was associated with faster tau-PET accumulation at a given level of Aβ and whether faster BIN1 rs744373-associated tau-PET accumulation mediated cognitive decline. Results: BIN1 rs744373 risk-allele carriers showed faster global tau-PET accumulation (ADNI/BioFINDER, P <.001/P <.001). We found significant Aβ by rs744373 interactions on global tau-PET change (ADNI: β/standard error [SE] = 0.42/0.14, P = 0.002; BioFINDER: β/SE = –0.35/0.15, P =.021), BIN1 risk-allele carriers showed accelerated tau-PET accumulation at higher Aβ levels. In ADNI, rs744373 effects on cognitive decline were mediated by faster global tau-PET accumulation (β/SE = 0.20/0.07, P =.005). Discussion: BIN1-associated AD risk is potentially driven by accelerated tau accumulation in the face of Aβ.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view