SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Harrison Tabitha A.) ;pers:(Milne Roger L.)"

Sökning: WFRF:(Harrison Tabitha A.) > Milne Roger L.

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huyghe, Jeroen R., et al. (författare)
  • Discovery of common and rare genetic risk variants for colorectal cancer
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:1, s. 76-
  • Tidskriftsartikel (refereegranskat)abstract
    • To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 x 10(-8), bringing the number of known independent signals for CRC to similar to 100. New signals implicate lower-frequency variants, Kruppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.
  •  
2.
  • Archambault, Alexi N., et al. (författare)
  • Cumulative Burden of Colorectal Cancer Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer
  • 2020
  • Ingår i: Gastroenterology. - : Elsevier BV. - 0016-5085 .- 1528-0012. ; 158:5, s. 1274-1286.e12
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND & AIMS: Early-onset colorectal cancer (CRC, in persons younger than 50 years old) is increasing in incidence; yet, in the absence of a family history of CRC, this population lacks harmonized recommendations for prevention. We aimed to determine whether a polygenic risk score (PRS) developed from 95 CRC-associated common genetic risk variants was associated with risk for early-onset CRC.METHODS: We studied risk for CRC associated with a weighted PRS in 12,197 participants younger than 50 years old vs 95,865 participants 50 years or older. PRS was calculated based on single nucleotide polymorphisms associated with CRC in a large-scale genome-wide association study as of January 2019. Participants were pooled from 3 large consortia that provided clinical and genotyping data: the Colon Cancer Family Registry, the Colorectal Transdisciplinary Study, and the Genetics and Epidemiology of Colorectal Cancer Consortium and were all of genetically defined European descent. Findings were replicated in an independent cohort of 72,573 participants.RESULTS: Overall associations with CRC per standard deviation of PRS were significant for early-onset cancer, and were stronger compared with late-onset cancer (P for interaction = .01); when we compared the highest PRS quartile with the lowest, risk increased 3.7-fold for early-onset CRC (95% CI 3.28-4.24) vs 2.9-fold for late-onset CRC (95% CI 2.80-3.04). This association was strongest for participants without a first-degree family history of CRC (P for interaction = 5.61 x 10(-5)). When we compared the highest with the lowest quartiles in this group, risk increased 4.3-fold for early-onset CRC (95% CI 3.61-5.01) vs 2.9-fold for late-onset CRC (95% CI 2.70-3.00). Sensitivity analyses were consistent with these findings.CONCLUSIONS: In an analysis of associations with CRC per standard deviation of PRS, we found the cumulative burden of CRC-associated common genetic variants to associate with early-onset cancer, and to be more strongly associated with early-onset than late-onset cancer, particularly in the absence of CRC family history. Analyses of PRS, along with environmental and lifestyle risk factors, might identify younger individuals who would benefit from preventive measures.
  •  
3.
  • Thomas, Minta, et al. (författare)
  • Response to Li and Hopper
  • 2021
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 108:3, s. 527-529
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Huyghe, Jeroen R, et al. (författare)
  • Genetic architectures of proximal and distal colorectal cancer are partly distinct
  • 2021
  • Ingår i: Gut. - : BMJ Publishing Group Ltd. - 0017-5749 .- 1468-3288. ; 70:7, s. 1325-1334
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: An understanding of the etiologic heterogeneity of colorectal cancer (CRC) is critical for improving precision prevention, including individualized screening recommendations and the discovery of novel drug targets and repurposable drug candidates for chemoprevention. Known differences in molecular characteristics and environmental risk factors among tumors arising in different locations of the colorectum suggest partly distinct mechanisms of carcinogenesis. The extent to which the contribution of inherited genetic risk factors for CRC differs by anatomical subsite of the primary tumor has not been examined.Design: To identify new anatomical subsite-specific risk loci, we performed genome-wide association study (GWAS) meta-analyses including data of 48 214 CRC cases and 64 159 controls of European ancestry. We characterised effect heterogeneity at CRC risk loci using multinomial modelling.Results: We identified 13 loci that reached genome-wide significance (p<5×10-8) and that were not reported by previous GWASs for overall CRC risk. Multiple lines of evidence support candidate genes at several of these loci. We detected substantial heterogeneity between anatomical subsites. Just over half (61) of 109 known and new risk variants showed no evidence for heterogeneity. In contrast, 22 variants showed association with distal CRC (including rectal cancer), but no evidence for association or an attenuated association with proximal CRC. For two loci, there was strong evidence for effects confined to proximal colon cancer.Conclusion: Genetic architectures of proximal and distal CRC are partly distinct. Studies of risk factors and mechanisms of carcinogenesis, and precision prevention strategies should take into consideration the anatomical subsite of the tumour.
  •  
5.
  • Thomas, Minta, et al. (författare)
  • Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk.
  • 2020
  • Ingår i: American Journal of Human Genetics. - Cambridge : Elsevier BV. - 0002-9297 .- 1537-6605. ; 107:3, s. 432-444
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate colorectal cancer (CRC) risk prediction models are critical for identifying individuals at low and high risk of developing CRC, as they can then be offered targeted screening and interventions to address their risks of developing disease (if they are in a high-risk group) and avoid unnecessary screening and interventions (if they are in a low-risk group). As it is likely that thousands of genetic variants contribute to CRC risk, it is clinically important to investigate whether these genetic variants can be used jointly for CRC risk prediction. In this paper, we derived and compared different approaches to generating predictive polygenic risk scores (PRS) from genome-wide association studies (GWASs) including 55,105 CRC-affected case subjects and 65,079 control subjects of European ancestry. We built the PRS in three ways, using (1) 140 previously identified and validated CRC loci; (2) SNP selection based on linkage disequilibrium (LD) clumping followed by machine-learning approaches; and (3) LDpred, a Bayesian approach for genome-wide risk prediction. We tested the PRS in an independent cohort of 101,987 individuals with 1,699 CRC-affected case subjects. The discriminatory accuracy, calculated by the age- and sex-adjusted area under the receiver operating characteristics curve (AUC), was highest for the LDpred-derived PRS (AUC = 0.654) including nearly 1.2 M genetic variants (the proportion of causal genetic variants for CRC assumed to be 0.003), whereas the PRS of the 140 known variants identified from GWASs had the lowest AUC (AUC = 0.629). Based on the LDpred-derived PRS, we are able to identify 30% of individuals without a family history as having risk for CRC similar to those with a family history of CRC, whereas the PRS based on known GWAS variants identified only top 10% as having a similar relative risk. About 90% of these individuals have no family history and would have been considered average risk under current screening guidelines, but might benefit from earlier screening. The developed PRS offers a way for risk-stratified CRC screening and other targeted interventions.
  •  
6.
  • Tian, Yu, et al. (författare)
  • Genome-Wide Interaction Analysis of Genetic Variants With Menopausal Hormone Therapy for Colorectal Cancer Risk
  • 2022
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 114:8, s. 1135-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The use of menopausal hormone therapy (MHT) may interact with genetic variants to influence colorectal cancer (CRC) risk. METHODS: We conducted a genome-wide, gene-environment interaction between single nucleotide polymorphisms and the use of any MHT, estrogen only, and combined estrogen-progestogen therapy with CRC risk, among 28 486 postmenopausal women (11 519 CRC patients and 16 967 participants without CRC) from 38 studies, using logistic regression, 2-step method, and 2- or 3-degree-of-freedom joint test. A set-based score test was applied for rare genetic variants. RESULTS: The use of any MHT, estrogen only and estrogen-progestogen were associated with a reduced CRC risk (odds ratio [OR] = 0.71, 95% confidence interval [CI] = 0.64 to 0.78; OR = 0.65, 95% CI = 0.53 to 0.79; and OR = 0.73, 95% CI = 0.59 to 0.90, respectively). The 2-step method identified a statistically significant interaction between a GRIN2B variant rs117868593 and MHT use, whereby MHT-associated CRC risk was statistically significantly reduced in women with the GG genotype (OR = 0.68, 95% CI = 0.64 to 0.72) but not within strata of GC or CC genotypes. A statistically significant interaction between a DCBLD1 intronic variant at 6q22.1 (rs10782186) and MHT use was identified by the 2-degree-of-freedom joint test. The MHT-associated CRC risk was reduced with increasing number of rs10782186-C alleles, showing odds ratios of 0.78 (95% CI = 0.70 to 0.87) for TT, 0.68 (95% CI = 0.63 to 0.73) for TC, and 0.66 (95% CI = 0.60 to 0.74) for CC genotypes. In addition, 5 genes in rare variant analysis showed suggestive interactions with MHT (2-sided P < 1.2 × 10-4). CONCLUSION: Genetic variants that modify the association between MHT and CRC risk were identified, offering new insights into pathways of CRC carcinogenesis and potential mechanisms involved.
  •  
7.
  • Bien, Stephanie A., et al. (författare)
  • Genetic variant predictors of gene expression provide new insight into risk of colorectal cancer
  • 2019
  • Ingår i: Human Genetics. - : Springer. - 0340-6717 .- 1432-1203. ; 138:4, s. 307-326
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have reported 56 independently associated colorectal cancer (CRC) risk variants, most of which are non-coding and believed to exert their effects by modulating gene expression. The computational method PrediXcan uses cis-regulatory variant predictors to impute expression and perform gene-level association tests in GWAS without directly measured transcriptomes. In this study, we used reference datasets from colon (n=169) and whole blood (n=922) transcriptomes to test CRC association with genetically determined expression levels in a genome-wide analysis of 12,186 cases and 14,718 controls. Three novel associations were discovered from colon transverse models at FDR0.2 and further evaluated in an independent replication including 32,825 cases and 39,933 controls. After adjusting for multiple comparisons, we found statistically significant associations using colon transcriptome models with TRIM4 (discovery P=2.2x10(-4), replication P=0.01), and PYGL (discovery P=2.3x10(-4), replication P=6.7x10(-4)). Interestingly, both genes encode proteins that influence redox homeostasis and are related to cellular metabolic reprogramming in tumors, implicating a novel CRC pathway linked to cell growth and proliferation. Defining CRC risk regions as one megabase up- and downstream of one of the 56 independent risk variants, we defined 44 non-overlapping CRC-risk regions. Among these risk regions, we identified genes associated with CRC (P<0.05) in 34/44 CRC-risk regions. Importantly, CRC association was found for two genes in the previously reported 2q25 locus, CXCR1 and CXCR2, which are potential cancer therapeutic targets. These findings provide strong candidate genes to prioritize for subsequent laboratory follow-up of GWAS loci. This study is the first to implement PrediXcan in a large colorectal cancer study and findings highlight the utility of integrating transcriptome data in GWAS for discovery of, and biological insight into, risk loci.
  •  
8.
  • Bull, Caroline J., et al. (författare)
  • Adiposity, metabolites, and colorectal cancer risk : Mendelian randomization study
  • 2020
  • Ingår i: BMC Medicine. - : BMC. - 1741-7015. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Higher adiposity increases the risk of colorectal cancer (CRC), but whether this relationship varies by anatomical sub-site or by sex is unclear. Further, the metabolic alterations mediating the effects of adiposity on CRC are not fully understood. Methods We examined sex- and site-specific associations of adiposity with CRC risk and whether adiposity-associated metabolites explain the associations of adiposity with CRC. Genetic variants from genome-wide association studies of body mass index (BMI) and waist-to-hip ratio (WHR, unadjusted for BMI; N = 806,810), and 123 metabolites from targeted nuclear magnetic resonance metabolomics (N = 24,925), were used as instruments. Sex-combined and sex-specific Mendelian randomization (MR) was conducted for BMI and WHR with CRC risk (58,221 cases and 67,694 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry). Sex-combined MR was conducted for BMI and WHR with metabolites, for metabolites with CRC, and for BMI and WHR with CRC adjusted for metabolite classes in multivariable models. Results In sex-specific MR analyses, higher BMI (per 4.2 kg/m(2)) was associated with 1.23 (95% confidence interval (CI) = 1.08, 1.38) times higher CRC odds among men (inverse-variance-weighted (IVW) model); among women, higher BMI (per 5.2 kg/m(2)) was associated with 1.09 (95% CI = 0.97, 1.22) times higher CRC odds. WHR (per 0.07 higher) was more strongly associated with CRC risk among women (IVW OR = 1.25, 95% CI = 1.08, 1.43) than men (IVW OR = 1.05, 95% CI = 0.81, 1.36). BMI or WHR was associated with 104/123 metabolites at false discovery rate-corrected P <= 0.05; several metabolites were associated with CRC, but not in directions that were consistent with the mediation of positive adiposity-CRC relations. In multivariable MR analyses, associations of BMI and WHR with CRC were not attenuated following adjustment for representative metabolite classes, e.g., the univariable IVW OR for BMI with CRC was 1.12 (95% CI = 1.00, 1.26), and this became 1.11 (95% CI = 0.99, 1.26) when adjusting for cholesterol in low-density lipoprotein particles. Conclusions Our results suggest that higher BMI more greatly raises CRC risk among men, whereas higher WHR more greatly raises CRC risk among women. Adiposity was associated with numerous metabolic alterations, but none of these explained associations between adiposity and CRC. More detailed metabolomic measures are likely needed to clarify the mechanistic pathways.
  •  
9.
  • Ugai, Tomotaka, et al. (författare)
  • Prognostic role of detailed colorectal location and tumor molecular features : analyses of 13,101 colorectal cancer patients including 2994 early-onset cases
  • 2023
  • Ingår i: Journal of gastroenterology. - : Springer. - 0944-1174 .- 1435-5922. ; 58, s. 229-245
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The pathogenic effect of colorectal tumor molecular features may be influenced by several factors, including those related to microbiota, inflammation, metabolism, and epigenetics, which may change along colorectal segments. We hypothesized that the prognostic association of colon cancer location might differ by tumor molecular characteristics.Methods: Utilizing a consortium dataset of 13,101 colorectal cancer cases, including 2994 early-onset cases, we conducted survival analyses of detailed tumor location stratified by statuses of microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and KRAS and BRAF oncogenic mutation.Results: There was a statistically significant trend for better colon cancer-specific survival in relation to tumor location from the cecum to sigmoid colon (Ptrend = 0.002), excluding the rectum. The prognostic association of colon location differed by MSI status (Pinteraction = 0.001). Non-MSI-high tumors exhibited the cecum-to-sigmoid trend for better colon cancer-specific survival [Ptrend < 0.001; multivariable hazard ratio (HR) for the sigmoid colon (vs. cecum), 0.80; 95% confidence interval (CI) 0.70–0.92], whereas MSI-high tumors demonstrated a suggestive cecum-to-sigmoid trend for worse survival (Ptrend = 0.020; the corresponding HR, 2.13; 95% CI 1.15–3.92). The prognostic association of colon tumor location also differed by CIMP status (Pinteraction = 0.003) but not significantly by age, stage, or other features. Furthermore, MSI-high status was a favorable prognostic indicator in all stages.Conclusions: Both detailed colonic location and tumor molecular features need to be accounted for colon cancer prognostication to advance precision medicine. Our study indicates the important role of large-scale studies to robustly examine detailed colonic subsites in molecular oncology research.
  •  
10.
  • Guo, Xingyi, et al. (författare)
  • Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects
  • 2020
  • Ingår i: Gastroenterology. - : Elsevier. - 0016-5085 .- 1528-0012. ; 160:4, s. 1164-1178
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims: Susceptibility genes and the underlying mechanisms for the majority of risk loci identified by genome-wide association studies (GWAS) for colorectal cancer (CRC) risk remain largely unknown. We conducted a transcriptome-wide association study (TWAS) to identify putative susceptibility genes.Methods: Gene-expression prediction models were built using transcriptome and genetic data from the 284 normal transverse colon tissues of European descendants from the Genotype-Tissue Expression (GTEx), and model performance was evaluated using data from The Cancer Genome Atlas (n = 355). We applied the gene-expression prediction models and GWAS data to evaluate associations of genetically predicted gene-expression with CRC risk in 58,131 CRC cases and 67,347 controls of European ancestry. Dual-luciferase reporter assays and knockdown experiments in CRC cells and tumor xenografts were conducted.Results: We identified 25 genes associated with CRC risk at a Bonferroni-corrected threshold of P < 9.1 × 10-6, including genes in 4 novel loci, PYGL (14q22.1), RPL28 (19q13.42), CAPN12 (19q13.2), MYH7B (20q11.22), and MAP1L3CA (20q11.22). In 9 known GWAS-identified loci, we uncovered 9 genes that have not been reported previously, whereas 4 genes remained statistically significant after adjusting for the lead risk variant of the locus. Through colocalization analysis in GWAS loci, we additionally identified 12 putative susceptibility genes that were supported by TWAS analysis at P < .01. We showed that risk allele of the lead risk variant rs1741640 affected the promoter activity of CABLES2. Knockdown experiments confirmed that CABLES2 plays a vital role in colorectal carcinogenesis.Conclusions: Our study reveals new putative susceptibility genes and provides new insight into the biological mechanisms underlying CRC development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy