SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hatsukade Bunyo) ;pers:(Izumi Takuma)"

Sökning: WFRF:(Hatsukade Bunyo) > Izumi Takuma

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Izumi, Takuma, et al. (författare)
  • ALMA OBSERVATIONS OF THE SUBMILLIMETER DENSE MOLECULAR GAS TRACERS IN THE LUMINOUS TYPE-1 ACTIVE NUCLEUS OF NGC 7469
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 811:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 1 observations of the central kiloparsec region of the luminous type. 1 Seyfert galaxy NGC 7469 with unprecedented high resolution (0.'' 5x0.'' 4 = 165 x 132 pc) at submillimeter wavelengths. Utilizing the wide. bandwidth of ALMA, we simultaneously obtained HCN(4-3), HCO+(4-3), CS(7-6), and partially CO(3-2) line maps, as well as the 860 mu m continuum. The region consists of the central similar to 1 '' component and the surrounding starburst ring with a radius of similar to 1.'' 5-2.'' 5. Several structures connect these components. Except for CO(3-2), these dense gas tracers are significantly concentrated toward the central similar to 1 '', suggesting their suitability to probe the nuclear regions of galaxies. Their spatial distribution resembles well those of centimeter and mid-infrared continuum emissions, but it is anticorrelated with the optical one, indicating the existence of dust-obscured star formation. The integrated intensity ratios of HCN(4-3)/HCO+(4-3) and HCN(4-3)/CS(7-6) are higher at the active galactic nucleus (AGN) position than at the starburst ring, which is consistent with our previous findings (submillimeter-HCN enhancement). However, the HCN(4-3)/HCO+(4-3) ratio at the AGN position of NGC 7469 (1.11 +/- 0.06) is almost half of the corresponding value of the low-luminosity type. 1 Seyfert galaxy NGC 1097 (2.0 +/- 0.2), despite the more than two orders of magnitude higher X-ray luminosity of NGC 7469. But the ratio is comparable to that of the close vicinity of the AGN of NGC 1068 (similar to 1.5). Based on these results, we speculate that some heating mechanisms other than X-ray (e.g., mechanical heating due to an AGN jet) can contribute significantly for shaping the chemical composition in NGC 1097.
  •  
2.
  • Izumi, Takuma, et al. (författare)
  • SUBMILLIMETER-HCN DIAGRAM FOR ENERGY DIAGNOSTICS IN THE CENTERS OF GALAXIES
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 818:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Compiling data from literature and the Atacama Large Millimeter/submillimeter Array archive, we show enhanced HCN(4-3)/HCO+(4-3) and/or HCN(4-3)/CS(7-6) integrated intensity ratios in circumnuclear molecular gas around active galactic nuclei (AGNs) compared to those in starburst (SB) galaxies (submillimeter HCN. enhancement). The number of sample galaxies is significantly increased from our previous work. We expect that this feature could potentially be an extinction-free energy diagnostic tool of nuclear regions of galaxies. Non-LTE radiative transfer modelings of the above molecular emission lines involving both collisional and radiative excitation, as well as a photon trapping effect, were conducted to investigate the cause of the high line ratios in AGNs. As a result, we found that enhanced abundance ratios of HCN to HCO+ and HCN to CS in AGNs as compared to SB galaxies by a factor of a few to even greater than or similar to 10 are a plausible explanation for the submillimeter HCN. enhancement. However, a counterargument of a systematically higher gas density in AGNs than in SB galaxies can also be a plausible scenario. Although we cannot fully distinguish. these two scenarios at this moment owing to an insufficient amount of multi-transition, multi-species data, the former scenario is indicative of abnormal chemical composition in AGNs. Regarding the actual mechanism to realize the composition, we suggest that it is difficult with conventional gas-phase X-ray-dominated region ionization models to reproduce the observed high line ratios. We might have to take into account other mechanisms such as neutral-neutral reactions that are efficiently activated in high-temperature environments and/or mechanically heated regions to further understand the high line ratios in AGNs.
  •  
3.
  • Umehata, Hideki, et al. (författare)
  • ALMA Reveals Strong [C II] Emission in a Galaxy Embedded in a Giant Ly alpha Blob at z=3.1
  • 2017
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 834:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the result from observations conducted with the Atacama Large Millimeter/submillimeter Array (ALMA) to detect [C II] 158 mu m fine structure line emission from galaxies embedded in one of the most spectacular Ly alpha blobs (LABs) at z = 3.1, SSA22-LAB1. Of three dusty star-forming galaxies previously discovered by ALMA 860 mu m dust continuum survey toward SSA22-LAB1, we detected the [C II] line from one, LAB1-ALMA3 at z = 3.0993 +/- 0.0004. No line emission was detected, associated with the other ALMA continuum sources or from three rest-frame UV/optical selected z(spec) similar or equal to 3.1 galaxies within the field of view. For LAB1-ALMA3, we find relatively bright [C II] emission compared to the infrared luminosity (L-[C II]/LIR approximate to 0.01) and an extremely high [C II] 158 mu m and [N II] 205 mu m emission line ratio (L[C II]/L[N II] > 55). The relatively strong [C II] emission may be caused by abundant photodissociation regions and sub-solar metallicity, or by shock heating. The origin of the unusually strong [C II] emission could be causally related to the location within the giant LAB, although the relationship between extended Ly alpha emission and interstellar medium conditions of associated galaxies is yet to be understand.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy