SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hatziminaoglou E.) "

Search: WFRF:(Hatziminaoglou E.)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fomalont, E. B., et al. (author)
  • THE 2014 ALMA LONG BASELINE CAMPAIGN: AN OVERVIEW
  • 2015
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 808:1
  • Journal article (peer-reviewed)abstract
    • A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to similar to 15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from 2014 September to late November, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C 138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at similar to 350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.
  •  
2.
  • Griffin, M. J., et al. (author)
  • The Herschel-SPIRE instrument and its in-flight performance
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L3-
  • Journal article (peer-reviewed)abstract
    • The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 mu m, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 mu m (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6'. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2.
  •  
3.
  • Spinoglio, L., et al. (author)
  • 2017
  • In: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 34
  • Journal article (peer-reviewed)abstract
    • IR spectroscopy in the range 12-230 mu m with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA's large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z similar to 6.
  •  
4.
  • Andreani, P., et al. (author)
  • The European ALMA Regional Centre: a model of user support
  • 2014
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. - 9780819496171 ; 9149, s. Art. no. 91490Y-
  • Conference paper (peer-reviewed)abstract
    • The ALMA Regional Centres (ARCs) form the interface between the ALMA observatory and the user community from the proposal preparation stage to the delivery of data and their subsequent analysis. The ARCs provide critical services to both the ALMA operations in Chile and to the user community. These services were split by the ALMA project into core and additional services. The core services are financed by the ALMA operations budget and are critical to the successful operation of ALMA. They are contractual obligations and must be delivered to the ALMA project. The additional services are not funded by the ALMA project and are not contractual obligations, but are critical to achieve ALMA full scientific potential. A distributed network of ARC nodes (with ESO being the central ARC) has been set up throughout Europe at the following seven locations: Bologna, Bonn-Cologne, Grenoble, Leiden, Manchester, Ondrejov, Onsala. These ARC nodes are working together with the central node at ESO and provide both core and additional services to the ALMA user community. This paper presents the European ARC, and how it operates in Europe to support the ALMA community. This model, although complex in nature, is turning into a very successful one, providing a service to the scientific community that has been so far highly appreciated. The ARC could become a reference support model in an age where very large collaborations are required to build large facilities, and support is needed for geographically and culturally diverse communities.
  •  
5.
  • Fathi, Kambiz, et al. (author)
  • Scale Length of Disk Galaxies
  • 2009
  • Conference paper (pop. science, debate, etc.)abstract
    • As a part of a Euro-VO research initiative, we have undertaken a programme aimed at studying the scale length of 54909 Sa-Sd spiral galaxies from the SDSS DR6 catalogue. We have retrieved u, g, r, i, z-band images for all galaxies in order to derive the light profiles. We also calculate asymmetry parameters to select non-disturbed disks for which we will derive exponential disk scale lengths. As images in different bands probe different optical depths and stellar populations, it is likely that a derived scale length value should depend on waveband, and our goal is to use the scale length variations with band pass, inclination, galaxy type, redshift, and surface brightness, in order to better understand the nature of spiral galaxies.
  •  
6.
  • Izumi, T., et al. (author)
  • On the Disappearance of a Cold Molecular Torus around the Low-luminosity Active Galactic Nucleus of NGC 1097
  • 2017
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 845:1, s. L5-
  • Journal article (peer-reviewed)abstract
    • We used the Atacama Large Millimeter/Submillimeter Array to map the CO(3-2) and the underlying continuum emissions around the type-1low-luminosity active galactic nucleus (LLAGN; bolometric luminosity less than or similar to 10(42) erg. s(-1)) of NGC 1097 at similar to 10 pc resolution. These observations revealed a detailed cold gas distribution within a similar to 100 pc of this LLAGN. In contrast to the luminous Seyfert galaxy NGC 1068, where a similar to 7 pc cold molecular torus was recently revealed, a distinctively dense and compact torus is missing in our CO(3-2) integrated intensity map of NGC 1097. Based on the CO(3-2) flux, the gas mass of the torus of NGC 1097 would be a factor of greater than or similar to 2-3 less than that found for NGC 1068 by using the same CO-to-H-2 conversion factor, which implies less active nuclear star formation and/or inflows in NGC 1097. Our dynamical modeling of the CO(3-2) velocity field implies that the cold molecular gas is concentrated in a thin layer as compared to the hot gas traced by the 2.12 mu m H-2 emission in and around the torus. Furthermore, we suggest that NGC 1097 hosts a geometrically thinner torus than NGC 1068. Although the physical origin of the torus thickness remains unclear, our observations support a theoretical prediction that geometrically thick tori with high opacity will become deficient as AGNs evolve from luminous Seyferts to LLAGNs.
  •  
7.
  • Belete, A. Bewketu, et al. (author)
  • Molecular gas kinematics in the nuclear region of nearby Seyfert galaxies with ALMA
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Journal article (peer-reviewed)abstract
    • Context. The study of the distribution, morphology, and kinematics of cold molecular gas in the nuclear and circumnuclear regions of active galactic nuclei (AGNs) helps to characterise and hence to quantify the impact of the AGNs on the host galaxy over its lifetime. Aims. We present the analysis of the molecular gas in the nuclear regions of three Seyfert galaxies, NGC 4968, NGC 4845, and MCG-06-30-15, using Atacama Large sub-Millimetre Array (ALMA) observations of the CO(2-1) emission line. The aim is to determine the kinematics of the gas in the central (∼1 kpc) region and thereby to probe nuclear fueling and feedback of AGNs. Methods. We used two different softwares, namely the 3D-Based Analysis of Rotating Object via Line Observations and DiskFit, to model the kinematics of the gas in the molecular disc, and thereby to determine the gas rotation and any kinematical perturbations. Results. Circular motions dominate the kinematics of the molecular gas in the central discs, mainly in NGC 4845 and MCG-06-30-15; however there is clear evidence of non-circular motions in the central (∼1 kpc) region of NGC 4845 and NGC 4968. The strongest non-circular motion is detected in the inner disc of NGC 4968, mainly along the minor kinematic axis, with a velocity ∼115 km s-1. Of all DiskFit models, the bisymmetric model is found to give the best fit for NGC 4968 and NGC 4845, indicating that the observed non-circular motions in the inner disc of these galaxies could result from the nuclear barred structure, where the gas streams in elliptical orbits aligned along the bar. If the dynamics of NGC 4968 is modelled as a corotation pattern just outside of the bar, the bar pattern speed becomes ωb = 52 km s-1 kpc-1; the corotation is set at 3.5 kpc; and the inner Lindblad resonance (ILR) ring is R  =  300 pc, corresponding to the CO emission ring. In the NGC 4968 galaxy, the torques exerted on the gas by the bar are positive in the centre, within the gas nuclear ring, and negative outside. This shows that the gas is transiently trapped in the ILR. The comparison of the CO intensity maps with the map of the cold dust emission shows an absence of CO in the centre of NGC 4968; also the dust distribution and CO emission in and around the centre of NGC 4845 have similar extensions. The 1.2 mm ALMA continuum is peaked and compact in NGC 4968 and MCG-06-30-15, but their CO(2-1) emissions have extended distributions. Allowing the CO-to-H2 conversion factor αCO between 0.8 and 3.2, which is typical of nearby galaxies of the same type, the molecular mass M(H2) is estimated to be ∼3  -  12  ×  107  M⊙ (NGC 4968), ∼9  -  36  ×  107  M⊙ (NGC 4845), and ∼1  -  4  ×  107  M⊙ (MCG-06-30-15). Conclusions. We conclude that the observed non-circular motions in the molecular disc of NGC 4968 and likely those seen in NGC 4845 are due to the presence of the bar in the nuclear region. We discuss the possibility that the observed pattern in the kinematics might be a consequence of the presence of AGNs, and this might be the case for NGC 4845. At the current spectral and spatial resolution and sensitivity, we cannot claim any strong evidence in these sources of the long sought feedback or feeding effect resulting from the presence of AGNs.
  •  
8.
  • Fathi, Kambiz, et al. (author)
  • Disc scalelengths out to redshift 5.8
  • 2012
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966 .- 1745-3925. ; 423:1, s. l112-L116
  • Journal article (peer-reviewed)abstract
    • We compute the exponential disc scalelength for 686 disc galaxies with spectroscopic redshifts out to redshift 5.8 based on Hubble Space Telescope archival data. We compare the results with our previous measurements based on 30 000 nearby galaxies from the Sloan Digital Sky Survey. Our results confirm the presence of a dominating exponential component in galaxies out to this redshift. At the highest redshifts, the disc scalelength for the brightest galaxies with absolute magnitude between -24 and -22 is up to a factor of 8 smaller compared to that in the local Universe. This observed scalelength decrease is significantly greater than the value predicted by a cosmological picture in which baryonic disc scalelength scales with the virial radius of the dark matter halo.
  •  
9.
  • Fernandez-Ontiveros, J. A., et al. (author)
  • A CO molecular gas wind 340 pc away from the Seyfert 2 nucleus in ESO420-G13 probes an elusive radio jet*
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 633
  • Journal article (peer-reviewed)abstract
    • A prominent jet-driven outflow of CO(2-1) molecular gas is found along the kinematic minor axis of the Seyfert 2 galaxy ESO 420-G13, at a distance of 340-600 pc from the nucleus. The wind morphology resembles the characteristic funnel shape, formed by a highly collimated filamentary emission at the base, and likely traces the jet propagation through a tenuous medium, until a bifurcation point at 440 pc. Here the jet hits a dense molecular core and shatters, dispersing the molecular gas into several clumps and filaments within the expansion cone. We also trace the jet in ionised gas within the inner less than or similar to 340 pc using the [NeII](12.8 mu m) line emission, where the molecular gas follows a circular rotation pattern. The wind outflow carries a mass of similar to 8 x 10(6) M-circle dot at an average wind projected speed of similar to 160 km s(-1), which implies a mass outflow rate of similar to 14 M-circle dot yr(-1). Based on the structure of the outflow and the budget of energy and momentum, we discard radiation pressure from the active nucleus, star formation, and supernovae as possible launching mechanisms. ESO 420-G13 is the second case after NGC 1377 where a previously unknown jet is revealed through its interaction with the interstellar medium, suggesting that unknown jets in feeble radio nuclei might be more common than expected. Two possible jet-cloud configurations are discussed to explain an outflow at this distance from the AGN. The outflowing gas will likely not escape, thus a delay in the star formation rather than quenching is expected from this interaction, while the feedback effect would be confined within the central few hundred parsecs of the galaxy.
  •  
10.
  • Hatziminaoglou, E., et al. (author)
  • A COMPLETE CENSUS OF SILICATE FEATURES IN THE MID-INFRARED SPECTRA OF ACTIVE GALAXIES
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 803:2
  • Journal article (peer-reviewed)abstract
    • We present a comprehensive study of the silicate features at 9.7 and 18 mu m of a sample of almost 800 active galactic nuclei (AGNs) with available spectra from the Spitzer InfraRed Spectrograph (IRS). We measure the strength of the silicate feature at 9.7 mu m, S-9.7, before and after subtracting the host galaxy emission from the IRS spectra. The number of type 1 and 2 AGNs with the feature in emission increases by 20 and 50%, respectively, once the host galaxy is removed, while 35% of objects with this feature originally in absorption exhibit it in even deeper absorption. The peak of S-9.7, lambda(peak), has a bimodal distribution when the feature is in emission, with about 65% of the cases showing lpeak > 10.2 mu m. Silicates can appear in emission in objects with mid-infrared (MIR) luminosity spanning over six orders of magnitude. The derived distributions of the strength of the silicate features at 9.7 and 18 mu m provide a solid test bed for modeling the dust distribution in AGNs. Clumpiness is needed in order to produce absorption features in unobscured AGNs and can also cause the silicates to be in absorption at 9.7 mu m and in emission at 18 mu m in type 1 sources. We find the cosmic silicates of Ossenkopf et al. to be more consistent with the observations than Draine's astronomical silicates. Finally, we discuss the possibility of a foreground absorber to explain the deep silicate absorption features in the MIR spectra of some type 2 AGNs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view